Tag Archives: right angle motor

China supplier Reducer Motor Gear Motor Basics Right Angle Reducers Thickener Gearbox car gearbox

Product Description

Detailed Images

 

 

 

 

 

 

Product Description

Description of Helical Gearbox Geared Motor

Available Ratios: more than 100 ratios from 3.83 – 229.71
Maximum power: 160KW
Maximum Output Torque: 23,200Nm

-Modularized gears and pinions;
-Additional option of IEC adaptors allowing use of both standard Nema or IEC motors;
-High precision helical gears and shafts made of 20CrMnTi alloy steel, heat treated with carburizing and quenching, ground finish,
in compliance with ISO 1328-1997;
-98% Efficiency in each stage;
-Cast iron housing and covers durable for heavy load and torque;

The integrated design of modular motor and reducer can realize rapid delivery;
The input and output shafts are right angled, with compact structure and low noise;
Possibility of mounting positions and methods in all directions and sides;

Gearbox case is made of high-strength gray cast iron, with good stiffness and excellent vibration damping performance;
Gears and pinions are made of high strength alloy steel. Treated with carburization, quench and hardening, the surface hardnessreaches HRC58-62;

All gears and pinions are modified and grinded by CNC grinding equipment to improve the strength and reduce the noise;
Optimized structure designed for noise reduction and faster cooling.

Different Mounting Positions of Helical Gearbox Geared Motor

Packing & Delivery

Packaging Pictures of Helical Gearbox Geared Motor

 

Inner Packing: PP bag with carton;
Outer Packing: Carton boxes and wooden cases;
Leadtime: 20-30 days CZPT order confirm.

 

About Us

Welcome to CZPT Group, China’s leading gearbox manufacturer since 1976. Our journey, spHangZhou over 4 decades, has established us as a benchmark of CZPT in the power transmission industry.
 

We proudly made history in the 1980s by exporting the first China-made reducer and have since maintained our status as China’s top gearbox exporter.Today, we proudly export 70% of our products to more than 40 countries, including key markets like Italy, Germany, the USA, Spain, Brazil, Argentina, Turkey, and India.
 

Our extensive product range includes worm gear reducers, helical gearboxes, shaft-mounted reducers, helical bevel gearboxes, and slewing drives.These products are vital across various sectors, from industrial production equipment, power, and mining to metallurgy, agriculture, construction, and marine, as well as in the burgeoning clean energy sector.
 

Our team of experts, among the world’s best, upholds the highest standards for both standard and OEM products. Driven by innovation and cutting-edge technology, we prioritize quality and our customers’ needs. Our state-of-the-art facilities, equipped with the latest machinery and a team of seasoned professionals, ensure consistent quality and impressive daily output. We’re proud to produce 4,000 units daily, totaling over 1.2 million units annually.
 

We cordially invite you to visit us and witness first hand why CZPT Group is the gem of China’s gearbox manufacturing. Seeing is believing, and we eagerly anticipate demonstrating our expertise and craftsmanship. Join us in driving the future forward.
 

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: in-Line
Gear Shape: Bevel Gear
Step: Double-Step
Customization:
Available

|

Customized Request

helical gearbox

Precision and High-Accuracy Applications of Helical Gearboxes

Helical gearboxes are well-suited for precision and high-accuracy applications due to their unique design and performance characteristics:

  • Helical Gearing: The helical gears in these gearboxes offer smooth and continuous meshing, resulting in reduced backlash and improved positioning accuracy.
  • Efficiency: Helical gearboxes are known for their high efficiency, which minimizes energy losses and heat generation. This is crucial for maintaining precision in applications where even small deviations can have significant impacts.
  • Noise and Vibration: The helical gear tooth engagement helps in reducing noise and vibration levels, making them suitable for environments where quiet operation is required.
  • Load Distribution: Helical gears distribute load across multiple teeth, minimizing localized wear and extending the lifespan of the gearbox.
  • Smooth Motion: Helical gearboxes provide smoother motion transitions, which is crucial in precision applications where jerky or sudden movements are undesirable.
  • Positional Accuracy: The reduced backlash and improved meshing characteristics of helical gears contribute to higher positional accuracy, making these gearboxes ideal for applications such as CNC machines, robotics, and medical equipment.
  • Compact Design: Helical gearboxes can achieve high gear ratios in a relatively compact form factor, making them suitable for applications where space is limited.

Examples of precision applications where helical gearboxes are commonly used include CNC machining, robotics, semiconductor manufacturing, medical equipment, and metrology devices. The combination of efficiency, smooth operation, and accuracy makes helical gearboxes a preferred choice for achieving consistent and reliable performance in such applications.

helical gearbox

Considerations for Designing Helical Gearboxes for Heavy-Duty Applications

Designing helical gearboxes for heavy-duty applications requires careful consideration of various factors to ensure reliable and efficient operation under high loads and demanding conditions. Here are the key considerations:

  • Load Capacity: Heavy-duty applications involve substantial loads. The gearbox must be designed to handle these loads while preventing premature wear and failure. Calculations of the load distribution, contact stresses, and material strength are crucial.
  • Material Selection: High-strength and durable materials are essential for heavy-duty gearboxes. Alloy steels or special heat-treated materials are often chosen to provide the necessary strength and resistance to fatigue and wear.
  • Gear Tooth Design: Optimal gear tooth profiles, such as optimized helix angles and tooth modifications, contribute to smoother engagement and reduced stress concentrations. This enhances the gearbox’s ability to handle heavy loads without excessive wear.
  • Bearing Selection: Robust and high-capacity bearings are necessary to support the heavy loads and provide reliable shaft support. The bearings must be able to withstand both radial and axial forces generated during operation.
  • Lubrication: Adequate lubrication is critical for heavy-duty gearboxes. Lubricants with high load-carrying capacity and extreme pressure properties are chosen to ensure proper lubrication under heavy loads and to reduce friction and wear.
  • Heat Dissipation: Heavy-duty applications can generate significant heat due to friction and load. Efficient heat dissipation mechanisms, such as cooling fins or oil cooling, should be incorporated into the gearbox design to prevent overheating and thermal damage.
  • Sealing: Effective sealing is necessary to prevent contaminants from entering the gearbox and to retain lubricants. Seals must be capable of withstanding the conditions of the application, including high loads, vibrations, and potential exposure to harsh environments.
  • Efficiency: Although heavy-duty applications prioritize load capacity, achieving acceptable levels of efficiency is still important to minimize energy losses and heat generation. Proper gear tooth design and high-quality manufacturing contribute to better efficiency.
  • Structural Integrity: The gearbox housing and components must be designed with structural integrity in mind. Rigidity and robustness are required to prevent distortion or failure of components under heavy loads.
  • Reliability and Serviceability: Heavy-duty gearboxes should be designed with reliability and ease of maintenance in mind. Access to critical components, such as gears and bearings, for inspection and replacement is important to minimize downtime.

Conclusion: Designing helical gearboxes for heavy-duty applications involves a comprehensive approach that addresses load capacity, material selection, gear tooth design, lubrication, heat dissipation, sealing, efficiency, structural integrity, and serviceability. By carefully considering these factors, engineers can create gearboxes that deliver exceptional performance and longevity in demanding industrial settings.

helical gearbox

Advantages of Helical Gearboxes in Industrial Applications

Helical gearboxes offer several advantages that make them well-suited for a wide range of industrial applications. Here are some of the key advantages:

  • Smooth and Quiet Operation: The helical design of the gears results in gradual tooth engagement, reducing noise and vibration during operation. This makes helical gearboxes ideal for applications where noise reduction is important.
  • High Efficiency: Helical gears provide a larger contact area compared to straight-cut gears, leading to improved power transmission efficiency. The gradual engagement of teeth also reduces energy losses due to friction.
  • Higher Load Capacity: The helical angle allows for multiple teeth to be engaged simultaneously, distributing the load across a larger area. This results in higher load-carrying capacity and increased durability of the gearbox.
  • Compact Design: Helical gearboxes can achieve high gear ratios with fewer gear stages, leading to a more compact overall design. This is advantageous in applications where space is limited.
  • Wide Range of Ratios: Helical gearboxes can achieve a wide range of gear ratios, making them versatile for various speed and torque requirements.
  • Less Backlash: The gradual tooth engagement of helical gears results in reduced backlash, which is the play between gear teeth. This leads to improved accuracy and positioning in applications that require precise motion control.
  • Heat Dissipation: The helical design allows for better heat dissipation due to the continuous contact between gear teeth. This is beneficial in high-speed applications where heat generation can be a concern.
  • Highly Customizable: Helical gearboxes can be customized to meet specific application requirements, including input and output configurations, gear ratios, and mounting options.

Overall, the advantages of helical gearboxes make them a popular choice in industries such as manufacturing, automation, robotics, material handling, and more.

China supplier Reducer Motor Gear Motor Basics Right Angle Reducers Thickener Gearbox   car gearbox	China supplier Reducer Motor Gear Motor Basics Right Angle Reducers Thickener Gearbox   car gearbox
editor by CX 2024-03-28

China best Right Angle Worm Helical Gear Speed Reducer S77 SA87 S97 SA Saf67 Motor Reducer 90 Degree Gearbox with Good quality

Product Description

Product Parameters

 

Features of S series reducer

The same model can be equipped with motors of various powers. It is easy to realize the combination and connection between various models.
The transmission efficiency is high, and the single reducer efficiency is up to 96%. three
The transmission ratio is subdivided and the range is wide. The combined model can form a large transmission ratio and low output speed.
The installation forms are various, and can be installed with any foot, B5 flange or B4 flange. The foot mounting reducer has 2 machined foot mounting planes.
Helical gear and worm gear combination, compact structure, large reduction ratio.
Installation mode: foot installation, hollow shaft installation, flange installation, torque arm installation, small flange installation.
Input mode: motor direct connection, motor belt connection or input shaft, connection flange input.
Average efficiency: reduction ratio 7.5-69.39 is 77%; 70.43-288 is 62%; The S/R combination is 57%.

Detailed Photos

 

Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Expansion
Gear Shape: Bevel Gear
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 150/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Advancements in Helical Gearbox Technology

Advancements in helical gearbox technology have led to improved performance, efficiency, and versatility. Here are some notable advancements:

  • Material Innovations: The use of advanced materials, such as high-strength alloys and composites, has enhanced the durability and load-carrying capacity of helical gears. These materials also contribute to reduced weight and improved efficiency.
  • Precision Manufacturing: Modern manufacturing techniques, including CNC machining and gear grinding, have enabled the production of helical gears with higher accuracy and tighter tolerances. This results in smoother operation and reduced noise levels.
  • Gear Tooth Profile Optimization: Advanced computer simulations and modeling techniques allow for the optimization of gear tooth profiles. This results in better load distribution, reduced stress concentration, and improved overall gearbox efficiency.
  • Lubrication and Cooling: Improved lubrication systems and cooling mechanisms help maintain optimal operating temperatures and extend the lifespan of helical gearboxes. This is particularly important for high-demand applications.
  • Noise and Vibration Reduction: Innovative designs and precision manufacturing techniques have led to helical gears with reduced noise and vibration levels. This advancement is crucial for industries where noise reduction is a priority.
  • Compact Design: Advancements in gear design and manufacturing have allowed for more compact and lightweight helical gearbox configurations, making them suitable for space-constrained environments.
  • Integration with Electronics: Some modern helical gearboxes are designed for seamless integration with electronic control systems. This enables better monitoring, control, and optimization of gearbox performance.
  • Customization: Advancements in manufacturing and design tools allow for greater customization of helical gearboxes to meet specific application requirements. This includes adapting gear ratios, sizes, and configurations.

In summary, advancements in helical gearbox technology have led to enhanced performance, durability, efficiency, and customization options. These innovations continue to make helical gearboxes a versatile and reliable choice for a wide range of industrial applications.

helical gearbox

Can Helical Gearboxes Be Retrofitted into Existing Machinery Designs?

Yes, helical gearboxes can often be retrofitted into existing machinery designs, providing an opportunity to upgrade the performance, efficiency, and reliability of older equipment. Here are the key points to consider when retrofitting helical gearboxes:

1. Compatibility: Before proceeding with a retrofit, it’s essential to ensure that the new helical gearbox is compatible with the existing machinery in terms of size, mounting, and shaft connections. Proper measurements and analysis are necessary to avoid any misalignment or fitment issues.

2. Space Considerations: Helical gearboxes may have a different physical profile compared to the original gearboxes. Engineers need to assess the available space in the machinery and confirm that the new gearbox will fit without major modifications.

3. Shaft Alignment: Proper shaft alignment is crucial to ensure smooth and efficient operation. During the retrofit, it’s important to align the new helical gearbox with other components in the system to prevent premature wear, noise, and vibration.

4. Power and Torque Ratings: The power and torque ratings of the helical gearbox should match or exceed the requirements of the machinery. This ensures that the new gearbox can handle the loads and stresses that the machinery may encounter.

5. Performance Improvements: Retrofitting with helical gearboxes can lead to improved efficiency, reduced noise, and smoother operation. These benefits can positively impact the overall performance and lifespan of the machinery.

6. Engineering Expertise: Retrofitting involves careful planning, engineering analysis, and implementation. Working with experienced engineers or gearbox specialists is advisable to ensure a successful retrofit without compromising the integrity of the machinery.

7. Cost-Benefit Analysis: Assessing the costs of the retrofit, including the cost of the new gearbox, installation, downtime, and potential modifications, is essential. Comparing these costs to the anticipated benefits of improved performance and efficiency will help make an informed decision.

8. Maintenance Considerations: Retrofitting may also impact maintenance practices. It’s important to understand any changes in lubrication requirements, inspection intervals, and servicing needs that come with the new gearbox.

Conclusion: Retrofitting helical gearboxes into existing machinery designs can be a cost-effective way to enhance the performance and extend the lifespan of equipment. However, careful planning, engineering analysis, and professional expertise are crucial to ensure a successful retrofit that delivers the desired improvements without causing unforeseen issues.

helical gearbox

Differences Between Helical Gearboxes and Spur Gearboxes

Helical gearboxes and spur gearboxes are two common types of gearboxes used in various applications. Here are the key differences between them:

  • Tooth Design: The main difference between helical and spur gearboxes lies in their tooth design. Helical gearboxes feature helical teeth that are cut at an angle to the gear axis, while spur gearboxes have straight-cut teeth that run parallel to the gear axis.
  • Engagement: Helical gearboxes offer a gradual and smooth engagement of teeth due to their helical tooth design. This results in reduced noise and vibration compared to spur gearboxes, which can have more abrupt and noisy tooth engagement.
  • Load Distribution: Helical gearboxes have a higher contact ratio between teeth at any given time, which leads to better load distribution across the gear teeth. Spur gearboxes, on the other hand, have fewer teeth in contact at a time, potentially leading to higher stress on individual teeth.
  • Efficiency: Helical gearboxes tend to be more efficient than spur gearboxes due to the helical tooth design, which reduces friction and energy losses during gear meshing. The gradual engagement of helical teeth contributes to this higher efficiency.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to spur gearboxes. The helical tooth design and smooth engagement help in reducing the impact of gear meshing on overall noise levels.
  • Applications: Helical gearboxes are commonly used in applications that require higher torque and smoother operation, such as heavy machinery, automotive transmissions, and industrial equipment. Spur gearboxes are suitable for applications with moderate loads and where noise considerations are not critical.

Overall, helical gearboxes offer advantages in terms of efficiency, load distribution, and noise reduction compared to spur gearboxes. However, the choice between the two depends on specific application requirements and factors such as torque, speed, space constraints, and noise considerations.

China best Right Angle Worm Helical Gear Speed Reducer S77 SA87 S97 SA Saf67 Motor Reducer 90 Degree Gearbox   with Good quality China best Right Angle Worm Helical Gear Speed Reducer S77 SA87 S97 SA Saf67 Motor Reducer 90 Degree Gearbox   with Good quality
editor by CX 2023-10-17

China factory Two Stage Helical Gearbox Motor Parallel Shaft Bevel Reducer Speed Spiral 90 Degree Right Angle Straight Supplier Competitive Price Stainless Steel Gearbox car gearbox

Product Description

Two Stage Helical Gearbox Motor Parallel Shaft Bevel Reducer Speed Spiral 90 Degree Right Angle Straight Supplier Competitive Price Stainless Steel Gearbox

Application of Helical Gearbox

Helical gearboxes are used in a wide variety of applications, including:

  • Automotive: Helical gearboxes are used in a variety of automotive applications, including transmissions, differentials, and steering systems. They help to transmit power smoothly and efficiently, which improves the overall performance of the vehicle.
  • Machinery: Helical gearboxes are used in a variety of machinery applications, including conveyor belts, elevators, and cranes. They help to transmit power smoothly and efficiently, which improves the overall performance of the equipment.
  • Aerospace: Helical gearboxes are used in a variety of aerospace applications, including aircraft engines, landing gear, and control surfaces. They help to transmit power smoothly and efficiently, which improves the overall performance of the aircraft.
  • Construction: Helical gearboxes are used in a variety of construction applications, including excavators, bulldozers, and cranes. They help to transmit power smoothly and efficiently, which improves the overall performance of the equipment.
  • Other: Helical gearboxes are also used in a variety of other applications, such as wind turbines, robotics, and medical devices. They help to transmit power smoothly and efficiently, which improves the overall performance of the system.

Helical gears are a type of gear that has teeth that are cut at an angle. This angle allows the teeth to engage each other gradually and smoothly, which reduces noise and vibration. Helical gears are often used in high-speed applications, such as in automotive differentials.

Helical gears are made of a variety of materials, including steel, cast iron, and aluminum. The material of the gear will depend on the specific application and the environment in which it will be used.

Helical gears are available in a variety of sizes and styles to accommodate a wide range of applications. They are also available in a variety of ratios, which allows them to be used in a variety of applications.

Here are some of the advantages of using helical gears:

  • Reduced noise and vibration: Helical gears help to reduce noise and vibration, which can improve the overall working environment.
  • Increased efficiency: Helical gears are more efficient than straight gears, which can help to improve the overall performance of a system.
  • Increased durability: Helical gears are made of durable materials that can withstand a lot of wear and tear.
  • Cost-effectiveness: Helical gears are a cost-effective way to improve the performance and durability of a system.

Overall, helical gears are a versatile and reliable component that can be used in a wide variety of applications. They offer a number of advantages, including reduced noise and vibration, increased efficiency, increased durability, and cost-effectiveness.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Three-Ring
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Stepless
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Key Factors for Selecting a Helical Gearbox

Choosing the right helical gearbox for an application involves considering several key factors:

  • Load and Torque: Evaluate the maximum load and torque requirements to ensure the gearbox can handle the application’s demands.
  • Speed Range: Determine the required speed range and ensure the gearbox’s gear ratios can accommodate it.
  • Efficiency: Helical gearboxes are known for their high efficiency. Select a gearbox with efficiency ratings that meet your application’s needs.
  • Space Constraints: Consider the available installation space and choose a compact gearbox that fits within the available dimensions.
  • Mounting Position: The mounting position affects lubrication, cooling, and overall performance. Ensure the gearbox is suitable for the desired mounting orientation.
  • Service Life: Choose a gearbox with a service life that matches your application’s expected lifespan.
  • Backlash: Evaluate the allowable backlash, which affects precision and positioning accuracy.
  • Noise and Vibration: Assess the acceptable noise and vibration levels and choose a gearbox with suitable characteristics.
  • Environmental Conditions: Consider factors like temperature, humidity, and dust levels to ensure the gearbox can operate reliably in the application environment.
  • Maintenance: Factor in maintenance requirements and choose a gearbox with manageable maintenance needs.
  • Cost: Balance performance with budget constraints to find a gearbox that offers the best value for your application.

By carefully evaluating these factors, you can select a helical gearbox that optimally meets your application’s requirements and ensures efficient and reliable operation.

helical gearbox

Relationship Between Helix Angle and Load Capacity in Helical Gears

The helix angle of helical gears plays a significant role in determining their load-carrying capacity and overall performance. Here’s the relationship between the helix angle and load capacity:

1. Load Distribution: The helix angle affects how the load is distributed along the gear teeth. A larger helix angle results in a more gradual tooth engagement, allowing for smoother load sharing across multiple teeth. This improves the gear’s ability to handle higher loads.

2. Contact Ratio: The contact ratio, which indicates the number of teeth in contact at any given time, increases with a larger helix angle. A higher contact ratio helps distribute the load over a larger area of the gear teeth, enhancing load-carrying capacity.

3. Tooth Meshing: The helix angle affects how the teeth mesh with each other. A higher helix angle promotes gradual and smoother meshing, reducing the concentration of stress on individual teeth. This results in improved resistance to wear and fatigue.

4. Axial Thrust: Helical gears produce axial thrust due to their helical nature. This thrust can affect the gear’s ability to handle radial loads. Proper consideration of the helix angle can help manage axial thrust and prevent overloading.

5. Lubrication: The helix angle affects the lubrication conditions between gear teeth. A larger helix angle may allow better oil flow and lubrication, reducing friction and wear, thereby enhancing load capacity.

6. Noise and Vibration: The helix angle also influences noise and vibration levels in helical gears. Optimal helix angle selection can minimize noise and vibration, contributing to smoother operation and prolonged gear life.

Optimal Helix Angle Selection: While a larger helix angle generally increases load capacity, it’s important to strike a balance. Extremely large helix angles can lead to reduced tooth strength and efficiency. Engineers consider factors like application requirements, tooth strength, and noise considerations when selecting the optimal helix angle for a specific gear design.

The relationship between the helix angle and load capacity underscores the importance of proper gear design to ensure optimal performance, durability, and reliability in various applications.

helical gearbox

Limitations and Disadvantages of Helical Gear Systems

While helical gear systems offer numerous advantages, they also come with certain limitations and disadvantages:

  • Axial Thrust: Helical gears generate axial thrust due to the helix angle of the teeth. This thrust can cause additional load on bearings and may require additional measures to counteract.
  • Complex Manufacturing: The manufacturing process for helical gears is more complex than that of straight-toothed gears, which can lead to higher production costs.
  • Axial Length: Helical gears require more axial space compared to spur gears with the same gear ratio. This can be a limitation in applications with space constraints.
  • Sliding Contact: Helical gears have sliding contact between their teeth, which can result in higher friction and more heat generation compared to rolling contact gears.
  • Efficiency: Although helical gears are generally efficient, their efficiency can be slightly lower than that of some other gear types, especially at high speeds.
  • Complexity in Gearbox Design: The inclination of helical gear teeth introduces additional complexity in gearbox design and alignment.
  • Reverse Thrust: In some cases, reverse thrust can occur when helical gears are subjected to high axial loads, leading to undesirable effects.

It’s important to consider these limitations and disadvantages when selecting gear systems for specific applications. Despite these challenges, helical gears remain a popular choice in various industries due to their benefits and overall performance characteristics.

China factory Two Stage Helical Gearbox Motor Parallel Shaft Bevel Reducer Speed Spiral 90 Degree Right Angle Straight Supplier Competitive Price Stainless Steel Gearbox   car gearbox	China factory Two Stage Helical Gearbox Motor Parallel Shaft Bevel Reducer Speed Spiral 90 Degree Right Angle Straight Supplier Competitive Price Stainless Steel Gearbox   car gearbox
editor by CX 2023-09-04

China Best Sales Right Angle Helical-Bevel Gear Motor Geared Reducer Gearbox for Winding Drives Pumps supplier

Product Description

 

Product Description

EasyFit  SYSTEM

The EasyFit System greatly improves the efficiency of cooperation with our partners. In a few steps, they are then assembled into geared motors in assembly centers and dealers around the world. The final assembly of the 3 components takes only 5 minutes.

S4 Family

SP4 Parallel shaft gear motor (F Series)

Foot, flange mounting, integrated motor, hollow shaft/solid shaft design

Output Torque Range: 200 – 15000 Nm

Ratio Range:   i = 3.5 – 30000

Power Range: 0.12 – 90 kW

Size Model: 1-8

 

SK4 Right angle shaft gear motor (K Series)

Foot, flange mounting, integrated motor, hollow shaft/solid shaft design

Output Torque Range:  440 – 20000 Nm

Ratio Range:  i = 7.1 – 30000

Power Range:  0.12 – 90 kW  
 
Size Model:  2-9

 

SI4 Inline kelical gear motor (R Series)

Foot, flange mounting, integrated motor

Output Torque Range:  200 – 25000 Nm

Ratio Range:  i = 2.8 – 30000

Power Range:  0.12 – 90 kW

Size Model:  1-9

 

Product Parameters

Type SK Series Bevel-Helical Gear Reducer
Model SKZN26,SKZN36,SKZN46,SKZN56,SKZN66,SKZN76,SKZN86,SKZN96
Size Type 2 ~ 9
Color RAL5015 Sky Blue/ GNORD Special Colour / RAL9002 Pearl While / RAL9005 Black / Customer Request
Material Housing: GG20,GG40 high-strength cast iron
Gear: 17CrNiMo6
Input/Output Shaft: 42CrMo alloy steel
Bearing NSK or NTN 
Seal S.K.F or Simrit
Machining Precision of gears Accurate grinding, 6-7 Grade
Lubricating oil Chevron Meropa/ Shell / Mobil
Warranty 1 Year
Packing Fumigation wooden case

 

Products’ End Users Show

 

Accessories

Company Profile

   GNORD is the brand affiliated to Acorn Industrial Corporation in United Stated and a subsidiary with entire capital and holdings from Chinese listed company. CZPT DRIVE has originated from German and American technology since 1908. The production base is located in HangZhou, ZheJiang , covering an area of 50000  square CZPT and with first phase investment of amount RMB 4 hundred million yuan (Amount to about USD 64 million). CZPT has the overall capabilities of design, research and development, production, marketing and service in the fields of all kinds of transmission systems and high precision parts. With the high level of product R&D and manufacturing capabilities, CZPT focuses on providing products in multiple fields and all-round services, which mainly face to the global high-end transmission market.
    The product quality assurance of CZPT is derived not only from the acquisition of  equipment of both gear motors and gearboxes from HangZhou Rexnord Transmissions Co.,Ltd as well as the intellectual property rights of CZ08 gearbox of United States and S4 series gear motor production line of Germany, but also from the taking over of factory staffs from HangZhou Rexnord which include the employees of production, R&D and sales group of gear motors and gear boxes. Xihu (West Lake) Dis.d by several patents and advanced manufacturing techniques, CZPT are now specializing in the production of gear motors, gearboxes,  special gearboxes for high performance welding robot and other related transmission device and parts, etc.
 

Sample Room

Exhibition

 

Application: Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Expansion
Gear Shape: Conical – Cylindrical Gear
Step: Double-Step
Customization:
Available

|

Customized Request

helical gearbox

NVH Characteristics of Helical Gearbox

Typically, a helical gearbox is used in the transmission of torque, speed, or both. Its primary function is to rotate a circular machine part while simultaneously meshing with other toothed parts. It operates on the same principle as a lever.

Typical applications

Typical applications of helical gearboxes include conveyors, blowers, and elevators. They are also used in the construction of plastics and rubber. Their basic benefits include reduced vibration, lower noise levels, and high load carrying capacity. They are also known to be more durable and quiet than spur gears.
There are several factors that should be taken into consideration when choosing the right gear set for a particular application. These include power requirements, torque requirements, and the environment in which it will operate. Also, bearings and lubricants will need to be considered.
Helical gears are used for heavy load applications, as they provide a high load-carrying capacity. They also are less expensive than spur gears. However, their efficiency is lower than spur gears. This is due to the fact that helical gears have larger teeth. They also have a lower dynamic load than spur gears. This reduces wear and tear on the gears.
Helical gears are also used in high-speed applications. They can also be used with non-parallel shafts. They are typically chosen over spur gears for non-parallel applications. However, helical gears are prone to misalignment due to axial thrust. This can be corrected by adjusting the bearing position.
Helical gears can also be used as power transmitting gears. They are commonly used in transmissions in the automotive industry. They are also used in a wide range of other industrial applications. These include blowers, feeders, coolers, and conveyors. They can also be used in the food and oil industries.
The most common types of helical gearboxes are single and double helical gearboxes. Single helical gears have one helical section that is parallel to the axis. Those with a circular arc curved tooth are also available.

NVH characteristics

NVH characteristics of helical gearbox are a major consideration in the development of new driveline products. NVH can be quantified using wavelet analysis, order analysis and statistical energy analysis. These techniques are typically used in the frequency domain, but can also be used in the real time domain.
The most basic NVH method uses a modal analysis to quantify the transmission noise. Simplified models use sinusoidal stiffness variations, but can also be used to study special effects.
One of the most important aspects of NVH is the integrity of the signal chain. The signal chain is affected by the gear meshing impact and the main transmission housing excitation. The first step in quantifying NVH is to establish a signal chain. This can be done by comparing the signals that are recorded on an analog to digital converter or hard disk. Then, using fast Fourier transforms, signals are converted from the time domain into the frequency domain.
For NVH analysis, it is important to obtain a representative prototype of the production vehicle. This is necessary early in the design phase, as changes to the final product often require substantial design modifications.
For helical gearboxes, the main benefit of reverse module configuration is that the radial type gearbox is more economical to produce. The radial type gearbox uses the same tooth-cutting tools as a spur gear, but can be produced more economically.
The basic characteristics of helical gears are that they have more surface contact and are more powerful in their carrying capacity. Because of this, the helical gearbox is typically used for high-load applications. However, helical gearboxes tend to produce lower efficiencies than spur types.
Thermal deformation of bearings can also change NVH characteristics of a helical gear transmission system. In this study, the effects of bearing temperature rise on the nonlinear dynamic characteristics of a helical gear system are investigated.helical gearbox

Helix

Compared to conventional gears, helical gears have more surface contact and produce less noise. These gears are a great choice for home and light industrial applications, especially where high-efficiency is required.
Helical gears produce axial thrust force through a special lubricant. They are used in different industries, such as automotive, oil, food, plastic, and textile. They are also used in blowers, feeders, and geared motors.
In helical gears, there is a special tooth at an angle to the axis of rotation. This tooth retains contact while the gear rotates into full engagement. Typically, the angle between the helix and the axis of rotation is 15 to 30 degrees. This angle is important for determining the number of teeth.
Compared to a straight cut gear, a helical gear has a higher power to weight ratio. This means that the helical gear can accommodate a higher load.
Helical gears are typically paired, with each gear containing a v-shaped tooth. The v-shaped tooth is designed to allow for a greater contact ratio, while maintaining an acceptable minimum amount of bottom clearance. However, the tooth tip may fracture if it is too thin.
A mathematical definition of the helix angle is important for the design of a helical gear. The helix angle is defined in the section on geometry of helical gear teeth.
The angle between the helix and the axial axis of rotation is used to calculate the axial contact ratio of a gear. This ratio is defined as the sum of the total number of contact lines, or teeth. If the overlap ratio of a gear pair is zero, then the axial contact ratio is also zero.
A helical gearbox can be a highly efficient transmission system, but may suffer from transmission error. This is the result of the axial thrust force, which is dissipated when it enters contact with an opposing tooth. To minimize the amount of power loss in a helical gear box, several approaches have been developed.

Transverse and normal planes of the teeth

Generally, helical gear teeth have two planes: the transverse and normal planes. The normal plane is perpendicular to the pitch plane. The transverse plane is perpendicular to the axial plane.
When a tooth is in contact, the load is normal to the surface at the contact point. This is known as the pressure angle. This angle is a function of the tooth’s radial position on the shaft axis. The angle can also be used to describe the shape of a tooth.
In helical gears, the normal pressure angle is the angle of the load line into the plane normal to the tooth axis. It is important to know the pressure angle when calculating the forces in a helical gear pair. This angle is usually between 15 and 30 degrees.
The helical gearbox is the most widely used gearbox. It consists of a set of helical gears connected by parallel shafts. It is also used in blowers, textile, sugar, and marine applications. It has a higher contact level and less vibration than conventional gears.
Helical gears can be used in feeders, blowers, and rubber and plastic applications. They are quieter than conventional gears, which is especially important in the food industry. They also transfer larger loads. They are also durable and can be used in blowers.
Helical gears have a slanted tooth trace. They are less noisy than conventional gears, which makes them ideal for marine applications. They also transmit rotation smoothly. They have an effective axial thrust force and transmit less vibration. They are used in many industrial applications, including the oil industry and the food industry.
Helical gears on non-parallel shafts have two major circles: the pitch circle and the root diameter. These circles can be different, so different tooth shapes can be used in the radial module system.helical gearbox

Impact of external thrust on helical gears

Considering that gearboxes are often a key component of power transmissions, the impact of external thrust on gearboxes has been investigated. This paper presents a theoretical model, accompanied by experimental measurements. In particular, this paper focuses on the effects of the thrust collar on the transfer path.
The thrust collar has been successfully proven to reduce the axial thrust between helical gears. It also reduces the acoustic impact of the gearbox by attenuating the radiated sound power. This has been accomplished by incorporating a sound damping mechanism that includes Rayleigh damping. The oil film that surrounds the thrust collar is another damping element.
In addition to reducing gearbox vibration, the oil film damping may attenuate coupled degrees of freedom. To test this, a theoretical model of a gearbox equipped with a thrust collar was developed. This model was then used in a gearbox dynamics simulation model to analyze the effects of the thrust collar on the transferpath.
The first partial model shows how the oil film and the radiated sound power could alter the acoustic performance of a gearbox. In particular, the sound pressure levels of exciting frequencies are compared at the top cover of the gearbox in the vertical direction. This was done using an accelerometer.
The second partial model is a simulation of airborne sound from the gearbox housing. This is done using the compound of the motor excitation and the meshing excitation. This is done by measuring the frequency of radiated sound at four different combinations of torque and speed.
In addition, the helical gear has been sliced into an arbitrary number of cross sections. Each gear is then mounted on a shaft, which rotates with a different timing. The helical gear is compared to a corresponding spur gear for comparison. The spur gear has a higher root stress, but its relative contact stress isn’t nearly as big as that of the helical gear.
China Best Sales Right Angle Helical-Bevel Gear Motor Geared Reducer Gearbox for Winding Drives Pumps   supplier China Best Sales Right Angle Helical-Bevel Gear Motor Geared Reducer Gearbox for Winding Drives Pumps   supplier
editor by CX 2023-05-06

China wholesaler CZPT K Series Right Angle Helical-Bevel Gear Motor Geared Reducer Gearbox for Distilleries skew bevel helical gearbox

Product Description

K 90 degree bevel gear reducer motor 

K helical speed gearbox  motor is designed based on modularization, which bring many difference kinds of combinations, mounting types, and structure designs. The detail classification of ratio can meet various of working condition. High Transmission efficiency, low energy consumption, superior performance. The hard tooth surface gear use the high quality alloy steel, the process of carburizing and quenching, grinding ,which give it following characters: Stable transmission, low noise and temperature, high loading, long working life. 

GPHQ K helical bevel gear box motor materials :

housing material: HT2OO high-strength cast iron   or HT250 High strength cast iron 
Gear material: 20CrMnTi
Housing hardness HBS90-240
Surface hardness of gear HRC58°-62°
Gear core hardness HRC33°-40°
Input/Output shaft material 40Cr
Input/Output shaft hardness HBS241°-286°
Shaft at oil seal position hardness HRC48 ° -55 °
Machining precision of gears material Accurate grinding 6-5 grade
Efficiency up to 98%
Noise(Max) 60-68dB
Temp.rise: 40°C
Vibration ≤20um
Motor IP54, F class ,B5 FLANGE 
color : blue  (if you need big quantity ,we can done as your wanted color )

 Our  reduction geared motor Advantage

1,reasonable price with excellent quality 
2,delivery in time 
3,safe ,reliable ,economical and durable 
4,stable transmission ,quiet operation 
5,smooth running and low noise 
6,nice appearance ,durable service life 
7,high heat-radiating efficiency ,high carrying ability 
8,each gearbox must be tested before packing
9.reply in high efficiency during 1 working day 
10. professional to produce gearbox and electric motor .

If there is any question, please don’t hesitate to contact with me (EVA), U can send us your inquiry. And you will get response in 1 working day.
 
MOTOR CATALOGUE :
CERTIFICATION  : 
PRODUCING PROCESS:
PACKAGE : 
for 1 container, directly loading ,for less, all goods with pallet.

FAQ
1, Q:what\’s your MOQ for ac gearbox motor  ?
A: 1pc is ok for each type electric gear box  motor 

2, Q: What about your warranty for your induction speed reducer motor ?
A: 1 year ,but except man-made destroyed

3, Q: which payment way you can accept ?
A: TT, western union .

4, Q: how about your payment way ?
A: 100%payment in advanced less $5000 ,30% payment in advanced payment , 70% payment before sending over $5000.

5, Q: how about your packing of speed reduction motor  ?
A: plywood case ,if size is small  ,we will pack with pallet for less 1 container 

6, Q: What information should be given, if I buy electric helical geared motor  from you ?
A: rated power,  ratio or output speed,type ,voltage , mounting way , quantity , if more is better , 
 

Application: Motor, Machinery, Agricultural Machinery
Function: Speed Changing, Speed Reduction
Layout: Bevel
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step
Customization:
Available

|

Customized Request

helical gearbox

What Is a Helical Gearbox?

Generally, the gear is a rotating circular machine part, and its purpose is to transmit speed and torque. It works by meshing with other toothed parts. This type of gear is made up of cut teeth, inserted teeth, and gear teeth.

Helix angle

Typical helical gearbox angle ranges from 15 to 30 degrees. It is commonly used in worm gears and screws. The angle is important in motion conversion and power transfer.
Helical gearboxes are suitable for high load applications. Because the teeth engage more gradually, helical gearboxes require bearings that can manage axial loading. In fact, the forces produced by helical gears are much less than those of spur gears. Moreover, helical gearboxes are often less efficient.
There are two basic gear systems: the spur gear system and the helical gear system. These systems are similar in their basic functions. However, they are distinguished by a number of important differences. The spur gear system produces thrust forces, while the helical gear system transmits energy through two axial configurations. Both systems operate at speeds of around 50m/s.
Spur gears have a common pitch, whereas helical gears have a different pitch. The pitch of helical gears changes as the helix angle changes. This leads to a difference in the diameter of the gear and the hobs. This changes the radial module system pitch and increases the manufacturing costs.
The normal pressure angle is the angle of the load line into the plane normal to the tooth axis. This angle is sometimes called the reference value.
Helical gears are available in both left-hand and right-hand configurations. Helical gears are typically characterized by quiet operation and higher power carrying capacity. They are also appreciated for their NVH characteristics. They are used in the oil, food, and plastic industries. They also have a higher efficiency than zero-helix angle gears.

Efficiency

Using helical gears in a gearbox provides several benefits. They are more efficient, quieter and better able to handle high load cases. However, they are also more expensive than classic gears.
The efficiency of a helical gearbox is calculated by measuring the efficiency of the entire working area. This is measured using a predefined measuring grid. The result is presented by an efficiency contour map. It shows that efficiency is not uniform in the working area.
This is because of the varying angles of the teeth of the gears. It is also important to consider the size of the pitch circle and the angle of the helix. The pitch circle is larger for helical gears than for spur gears. This means more surface contact and more potential for transmission of power between the parallel shafts.
Efficiency calculations for synchronizers are relatively new. Using data from power losses can help estimate the accuracy of these calculations.
The efficiency of a gearbox is mainly dependent on the power range and the torque. The higher the range, the better the efficiency. When the power range is reduced, the efficiency is reduced. The efficiency decreases sharply for high ratio gearboxes.
The efficiency of a gearbox also depends on the type of gearbox. Typically, spur gears are the most efficient, but helical gears are also quite efficient. In the same way that an electrical motor is more efficient than a standard cylinder engine, helical gears are more efficient than spur gears.helical gearbox

Applications

Various industries utilize helical gearboxes for different applications. These gears are primarily used in heavy industrial settings and are also used in the printing and plastic industries.
They are useful in transferring motion between parallel and right-angle shafts. Helical gears are more durable and offer smoother gear operation than other gear types. They are also less noisy and produce less friction.
Typical applications of helical gearboxes include conveyors, coolers, crushers, and other heavy industrial applications. They are also used in the food, chemical, and printing industries.
There are two main types of helical gearboxes: single helical gearboxes and double helical gearboxes. In the single gearbox, the teeth are at a certain angle to the axis. In the double gearbox, the teeth are at opposite angles.
Both gear types have their own advantages. The spur type is more suited for low-speed applications and is also less expensive to manufacture. However, helical gears are more efficient. They are also less noisy and have more teeth meshing capacity.
Helical gears also have a greater pitch circle diameter than spur gears. Because of this, they can tolerate a greater load and are more durable. The helical gearbox also uses thrust bearings to support the thrust force. In order to ensure smooth operation, the helical gears gradually engage.
Helical gears are also used in the automotive industry. They are the most common gear type used in the automotive transmission process.

Spiral teeth vs helical teeth

Depending on the application, there are two types of bevel gears: helical gears and spiral teeth bevel gears. They have a similar geometry, but they perform differently. While helical gears provide smoother operation and higher load carrying capacity, spiral teeth bevel gears are more flexible, reduce the risk of overheating, and have longer service life.
Helical gears are primarily used for helical or crossed shafts. They have teeth that are cut at a precise angle to the gear axis. They provide a smooth action during heavy loads and are used at high speeds. They can also be used for non-parallel shafts. However, they are less efficient than spur gears.
Spur gears are primarily used for parallel shafts. Their straight teeth are parallel to the gear axis. Their teeth come in sudden contact, which causes vibration and a noticeable noise. However, helical gears provide gradual engagement, minimizing vibration and backlash.
The root stress of helical gears is different from spur gears. It is dependent on the helix angle and the web thickness of the gear. The pressure angle of the teeth also affects the curvature radii. These factors affect the transverse contact ratio, which decreases the length of the contact line.
Helical gears are often used to change the angle of rotation by 90 degrees. They can also be used to eliminate shock loading. These gears can be used on parallel or crossed shafts.

PB and PLB Series

PB and PLB series helical gearboxes offer a bevy of benefits that include high power density and a compact modular design. Aside from offering a high output torque, they also offer low maintenance and a long life span. The manufacturers have also gone to great lengths to provide a robust case, a rigid worm and screw thread arrangement and a high reduction ratio. They also provide parallel shaft input options. This means you can use one gearbox to drive a whole train of synchronized gears.
Aside from the fact that it is one of the most durable gearboxes available, it is also one of the most versatile. In fact, the company manufactures a number of gearbox variants, ranging from a single gearbox to a fully modular multiple gearbox design. The high power density means it can operate in tight industrial spaces. PB and PLB series helical Gearboxes are available in a range of sizes, ensuring you find the perfect fit for your application. The PB and PLB Series helical gearboxes are also a cost-effective option for your next application. The company is also able to offer custom solutions to meet your specific needs.
The best part is that you can get your hands on these Gearboxes at a price that is well worth your hard earned dollars. The manufacturers also offer an industry leading warranty. PB and PLB series helical and worm gearboxes are available in a variety of sizes and configurations to suit your application.helical gearbox

Herringbone gears

Using Herringbone gears in helical gearboxes can give the advantages of quiet operation at high speed and minimal axial force. These gears can also be used in heavy machinery applications. However, manufacturing them is more difficult and expensive.
Herringbone gears are similar to double helical gears, except that they do not have a central gap. Originally, they were made by casting to an accurate pattern.
Today, they are characterized by two sets of gear teeth that are stuck together. They have a very high coincidence, which increases the bearing capacity of the gearbox. They also reduce wear and noise.
These gears are usually smaller than double helical gears. This makes them ideal for applications where vibration is high. The large contact area reduces stress. They also have a high carrying capacity. They are used in transmissions, heavy machinery, and differentials.
Herringbone gears are also used in torque gearboxes, especially those that do not have a significant thrust bearing. However, their use is less common because of manufacturing difficulties.
There are several solutions to the problem of making herringbone gears. One solution is to use a central groove to cut the gears. Another is to stack two helical gears together. Another solution is to use older machines that can be rebuilt to make herringbone gears.
Herringbone gears can be processed using milling methods. However, this method cannot be used to process all herringbone gears.
China wholesaler CZPT K Series Right Angle Helical-Bevel Gear Motor Geared Reducer Gearbox for Distilleries   skew bevel helical gearboxChina wholesaler CZPT K Series Right Angle Helical-Bevel Gear Motor Geared Reducer Gearbox for Distilleries   skew bevel helical gearbox
editor by CX 2023-04-23

China best Plastic Extruder Gearbox Right Angle Nmrv 90 Deagree Brushed Motor Worm Wheel Dune Buggy Small Speed Increasing Helical Planetary Power Transmission Gel Blaster helical bevel gearbox manufacturers

Product Description

             Plastic extruder gearbox right angle nmrv 90 deagree                      brushed motor worm wheel dune buggy small speed                 increasing helical planetary power transmission gel blaster

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Three-Ring
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Stepless
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Helical Gearbox

Using a helical gearbox can greatly improve the accuracy of a machine and reduce the effects of vibration and shaft axis impact. A gearbox is a circular machine part that has teeth that mesh with other teeth. The teeth are cut or inserted and are designed to transmit speed and torque.

Sliding

Among the many types of gearboxes, the helical gearbox is the most commonly used gearbox. This is because the helical gearbox has a sliding contact. The contact between two gear teeth begins at the beginning of one tooth and progresses to line contact as the gear rotates.
Helical gears are cylindrical gears with teeth cut at an angle to the axis. This angle enables helical gears to capture the velocity reversal at the pitch line due to the sliding friction. This leads to a much smoother motion and less wear. Moreover, the helical gearbox is more durable and quieter than other gearboxes.
Helical gears are divided into two categories. The first group comprises of crossed-axis helical gears, commonly used in automobile engine distributor/oil pump shafts. The second group comprises of zero-helix-angle gears, which do not produce axial forces. However, they do create heat, which causes loss of efficiency.
The helical gearbox configuration is often confounded, which results in higher working costs. In addition, the helical gearbox configuration does not have the same torque/$ ratio as zero-helix angle planetary gears.
When designing gears, it is important to consider the effects of gear sliding. Sliding can lead to friction, which can cause loss of power transmission. It also leads to uneven load distribution, which decreases the loadability of the helical planetary gearbox.
In addition, the mesh stiffness of helical gears is commonly ignored by researchers. An analytical model for the mesh stiffness of helical gears has been proposed.

Axial thrust forces

Several options are available for axial thrust forces in helical gearboxes. The most obvious is to use a double helical gear to offset the force component. Another option is to use a thrust bearing with a lower load carrying capacity. This becomes a sacrificial component.
In order to transmit a force, it must be distributed along the contact line. This force is the sum of tangential, radial and axial force components. All these components must be transferred from the source to the output. This is a complex process that involves the use of gears.
The axial force component must be transferred through the gears. The resultant force is then divided into orthogonal components and divided into the thrust directions. The radial force component is from the contact point to the driven gear center.
The axial force component is also determined by the size of the gear’s pitch diameter. A larger pitch diameter results in a greater bearing moment. Similarly, a larger gear ratio will produce a higher torque transmission.
It should be noted that the axial force component is only a small part of the total force. The normal force is distributed along the contact line.
The double helical gear is also not a perfect duplicate of the herringbone gear. It has two equal halves. It is used interchangeably with the herringbone gear. It also has the same helix angle.helical gearbox

Reduced impact on the shaft axis

Increasing the helix angle of a gear pair will reduce resonance effects on the shaft axis of a helical gearbox. However, this will not reduce the overall vibration in the gearbox. In fact, it will increase the vibration. This can lead to serious fatigue faults in the drive train.
This is because the helix angle has an effect on the contact line between two teeth. As the helix angle increases, the length of the contact line decreases. In addition, it has an effect on the normal force and curvature radii of the teeth. The pressure angle also affects the curvature radii.
Helical gears have several advantages over spur gears. These advantages include: lower vibration, NVH (noise, vibration and harshness) characteristics, and smooth operation under heavy loads. They also have better torque capability. However, they produce higher friction. They also require unique approaches to control their thrust forces.
The first step in reducing resonance effects is to regulate the meshing frequency of the helical gear stage. This can be done by varying the shift factors in the gear. If the shift factors are too large, then the gear will experience resonance effects. The helix angle is also affected by the gear’s shift factors. It is therefore important to control the gear’s geometry in order to reduce the resonance effects.
Next, the effects of the web structure and rim thickness on the root stress of the gear are examined. These are measured by strain gage. The results indicate that the maximum root stress is obtained when the worst meshing position is reached.

Quieter operation

Compared to spur gears, helical gears are much quieter in operation. This is due to their larger teeth. Aside from this, they have a higher load-carrying capacity. They also run smoother and have a higher speed capability. Helical gears are also a good substitute for spur gears.
The most significant parameter relating to noise reduction is the gear contact ratio. It ranges from below 1 to more than 10 and is determined by the number of teeth intersecting a parallel shaft line at the pith circle. It is also a good indicator of the level of noise reduction that helical gears provide.
In addition, helical gears have a lower impulse flexure than spur gears. This is because the contact point slides along the helical surface of each tooth. This also adds internal damping to the gear system.
While helical gears are less noisy than spur gears, they do have a high level of wear and tear. This can affect the performance of the gear. However, it is possible to improve the smoothness of the tooth surface by grinding. In addition, running the gears in oil can also help improve the smoothness of the tooth surface.
There are many industries that use helical gears. For example, the automotive industry uses them in their transmissions. They also are used in the agricultural industry. They are often used in heavy trucks.
Helical gears are also known to generate less heat and are quieter than other gears. They can also deliver parallel power transfers between parallel or non-parallel shafts.

Improved accuracy

Increasing the accuracy of a helical gearbox is the key to its operation and reliability. The accuracy of the gearbox is dependent on several features. Among the most important are the profile and lead. Moreover, the power requirements of a gear drive should be taken into consideration.
The profile is the most sensitive feature of a helical gear. If the profile is not symmetric, the gear will run with a noisy spur gear. In addition, the profile is also the most sensitive to lead.
A helical gearbox plays a key role in the power transmission of industrial applications. However, the heavy duty operating conditions make it susceptible to a variety of faults.
A helical gearbox’s performance depends on the accuracy of the individual gears. This is accomplished by minimizing the backlash. A common way to reduce backlash is to approach all target positions from a common direction. This approach also reduces transmission noise.
The accuracy of a helical gearbox can be improved by using a flexible electronic gearbox. This can reduce the degree of twist. Moreover, it can increase the accuracy of gear machining.
A helical gearbox with an electronic gearbox can increase the accuracy of twist compensation. It can also improve the linkage between B-axis, C-axis, and Z-axis. Moreover, the electronic gearbox will ensure the linkage relationship between Y-axis, Z-axis, and C-axis.
The accuracy of a helical Gearbox can be improved by calculating the position error of the gear train. Pitch deviation and helix angle deviation are two types of position error.helical gearbox

Reduced vibration

Using helical gearboxes can reduce vibration and noise. These gears are used in a variety of applications, including automotive transmissions. Moreover, these gears are quiet enough to operate in noise-sensitive applications.
Using CZPT software, three different gearbox housing designs are compared. The external dimensions and mass of each design are kept constant, but different quantities of longitudinal and transverse stiffeners are employed. The resulting models are then compared to experimental results. In addition, the free vibration response of these models is analyzed. The results are shown in Fig. 5.
In terms of noise reduction, the cellular model produces the lowest sound pressure level. However, the cross model produces the higher sound level. The cellular model also produces better peak to peak results.
The input-stage gear pair is the power source of the output-stage gear pair. The output-stage gear pair’s vibration is also studied. This includes a phase diagram and a frequency-domain diagram. The influence of the driving torque and the pinion’s velocity on the vibration is studied in a numerical manner. The time evolution of the normal force and the lubricant stiffness is also studied.
The input-stage pinion modification reduces the input-stage gear pair’s vibration. This reduction is achieved by adding dual bearing support to the input shaft.
China best Plastic Extruder Gearbox Right Angle Nmrv 90 Deagree Brushed Motor Worm Wheel Dune Buggy Small Speed Increasing Helical Planetary Power Transmission Gel Blaster   helical bevel gearbox manufacturersChina best Plastic Extruder Gearbox Right Angle Nmrv 90 Deagree Brushed Motor Worm Wheel Dune Buggy Small Speed Increasing Helical Planetary Power Transmission Gel Blaster   helical bevel gearbox manufacturers
editor by CX 2023-04-19

China Good quality Right Angle  Gear Motor Belt Conveyor Motor Reducer Helical Bevel Gearbox for Screw Conveyor helical gears advantages and disadvantages

Product Description

Detailed Photos


 

Product Parameters

 

R Series reducers are designed and manufactured on the basis of modular combination system.
There are a lot of motor combinations, installation forms and structural schemes. The transmission
ratio is classified and fine to meet different operating conditions, and the performance is superior.
Reinforced high rigid cast iron box; The hardened gear is made of high-quality alloy steel. Its surface
is carburized, quenched and hardened, and the gear is finely ground. It has stable transmission, low
noise, and large bearing capacity. Low temperature rise, long service life. It is widely used in metallurgy,1. Features: small offset output, compact structure, maximum use of box space, use of integral casting box, good stiffness, can improve the strength of the shaft and bearing life.

2. Installation type and output mode: bottom seated type and large and small flange type installation, CZPT shaft output.

3. Input mode: direct motor, shaft input and connecting flange input.

4. Reduction ratio: secondary 5~24.8, tertiary 27.2~264, R/R combination up to 18125.

5. Average efficiency: Class II 96%, Class III 94%, R/R combination 85%.

6. The R series specially designed for mixing can bear large axial and radial forces.

Technical parameters:

Coaxial coaxial output

R reducer

Power: 0.12KW~160KW

Torque: 1.4N · m ~ 23200N · m

Output speed: 0.06 ~ 1090r/min

Model example:

R17-Y4-4P-32.40-M1-0°

R: Series code

F: Shaft extension flange installation

17: Machine model

Y: Three phase AC asynchronous motor

4: Motor power

4P: motor stage

32.40: Transmission ratio

M1: Installation type

0 °: junction box position (0 ° – 270 °)

R series helical gear hardened gear reducer

Basic model of R series reducer:

R17R27R37R47R57R67R77R87R97R107R137R147R167

RF17RF27RF37RF47RF57RF67RF77RF87RF97RF107RF137RF147RF167

RX37RX57RX67RX77RX87RX97RX107RX127RX157

RXF37RXF57RXF67RXF77RXF87RXF97RXF107RXF127RXF157

R series helical gear reducer with hard tooth surface features small size, light weight, high bearing capacity, high efficiency, long service life, convenient installation, wide motor power range, fine transmission ratio classification, etc. It can be widely used in equipment that needs to be decelerated in various industries.

sewage treatment, chemical industry, pharmacy and other industries.

Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 1780/Piece
1 Piece(Min.Order)

|
Request Sample

How to Design a Helical Gearbox

Basically, a gear is a rotating circular machine part that has teeth cut into it to transmit torque or speed. Gears operate on a similar principle to levers. However, gears are usually asymmetrical in nature, and they have meshing teeth that work together to transmit torque or speed.helical gearbox

Helix angle

Whether you’re looking for a right angle gearbox or a helical gearbox, the angle of the teeth is an important consideration. It affects contact ratios, radial force and the torque capacity of the gear.
A helical gearbox uses the same basic elements as a spur gear, except it has teeth that are closer together. It is also more suited for high-load applications. It is also quieter than conventional gears. The main differences between a helical gearbox and a spur gear are its pitch and the helix angle.
The pitch of a helical gear is measured in the plane perpendicular to the direction of the teeth. It may also be called circular pitch. The pitch of a helical gear may be greater or less than circular pitch.
The normal pitch of a helical gear is also measured in the plane perpendicular to its direction of rotation. It is often called the reference value.
Unlike the spur gear, a helical gear does not have a unique optimum pressure angle. A helical gear’s contact ratio will decrease as the pressure angle increases. This is due to the fact that the length of the contact line decreases.
The pitch of a helical planetary gearbox can be calculated by dividing the total helix angle of the pinion and gear by the sum of their normal pressure angles. The helix angle is usually between 15 and 30 degrees.

Center distance

During the design of a helical gearbox, the center distance between the gears is a crucial input parameter. The center distance should be accurately calculated and modified based on the actual usage conditions. Undersized center distances cause a gear to mesh at a point other than the pitch point, which can lead to increased noise, premature wear and amplitude modulated vibrations.
The best way to calculate a helical gear’s center distance is to calculate the helix angle. This is often referred to as the fundamental rule of gearing. The helix angle is a mathematical expression that defines the relationship between the transverse and normal planes of the gear tooth. The pitch circle diameter increases with helix angle.
The number of teeth in a gear is also a relevant input parameter. There are a number of considerations to consider for determining the helix angle, such as the tooth depth, the pitch diameter, the number of teeth, and the radii of the index circle. The tooth depth is a useful way to calculate bottom clearance.
During the design of a helical mesh, the radial and axial thrust forces are produced. The angular backlash of a gear may vary depending on the type of gear, the pitch diameter and the transmission ratio. The total length of contact lines varies more gradually with the helix angle.
The number of cross sections in a helical mesh is also important. The radial module form is more economic to manufacture. The helical gearbox can be produced by using the same tooth cutting tools as spur gears.

Backlash

Having a smooth rotation of meshing gears is important. However, backlash is an issue that needs to be addressed. There are several ways of controlling backlash. The amount of backlash required depends on the application, size, and accuracy of the gears.
There are two basic ways of reducing backlash. The first is to decrease the distance between the gear centers. The second is to use spring loaded gears. The latter works better in low torque unidirectional drives.
The difference between the distances is called the transverse contact ratio. The longer the distance, the more rotational motion is required. The angular backlash is the opposite of the radial backlash.
The backlash may also be measured in terms of the angular distance between two gears. This measurement can be converted into an angular value at the operating pitch circle. A worm gear is another example.
Using the correct backlash calculator can determine the correct amount of backlash for your helical gearbox. The amount of backlash depends on the accuracy of the individual gears and the type of gearbox.
The gearbox also has components like pulleys, bearings, and wheels. There are several ways of reducing backlash, including the use of bolts and shims to decrease the center distance between gears. In heavy duty applications, a rigid bolted assembly is common.
To calculate the backlash of a geartrain, one must know the gear ratio of each gear in the train and how much it is mated to the reference shaft. This information is especially helpful for cumulative backlash.helical gearbox

Durability

Optimal design, materials, manufacturing, and maintenance procedures affect the lifecycle of a gear. This includes production, repair and replacement costs. The optimum maintenance schedule must also account for lifecycle costs.
The life of a gear can be extended by proper tooth tip relief. This will reduce wear, improve meshing, and increase the longevity of your gear.
The helical gearbox is a specialized type of gearbox, which transforms power from one right angle axis to another. Typical applications include automotive transmissions. It is a popular choice in applications with high speed, high load, or non-parallel shafts. It is quieter and smoother than spur gears. The modular production method used in helical gearboxes provides the best possible standard for component integrity and performance.
One of the most important components of a helical gearbox is the thrust bearings. These support the thrust forces created by the gears and can absorb some of them. A helical gearbox is best suited for high load applications that require a smooth gearing motion.
A good helical gearbox is one that is manufactured with bearings that can handle axial loading. A helical gearbox with a central gulley is often needed for tool clearance. The helix angle also has a bearing on its durability.
The helix angle is also the source of the largest thrust force produced by a helical gear. This large thrust force is produced by a series of special angle cut teeth. This may be one of the reasons why helical gears have been used in high speed applications.

Noise

Generally speaking, helical gears are considered to be a relative quieter gear than spur gears. It is estimated that a helical gear set with axial contact ratio of 2 is about 19 dB quieter than a spur gear set with the same contact ratio.
The term “whine” is often used to describe the tonal character of gear noise. This is a function of the dynamic forces that act on the gear mesh. The dynamic forces are related to rotational speed.
There are two main types of gear noise: the gear-specific noise and peripheral component noise. Both of these types can be caused by high-speed gears transmitting the power of an engine.
The gear-specific noise may be related to the number of teeth in contact. A low contact ratio can slow down the rotational speed of the driven gear. However, a high contact ratio will not reduce the transmission error. This is why it is important to prioritize your design intent before attempting any noise reduction measures.
The tonal character of gear noise can be determined by collecting and analyzing data over a period of time. This may include a series of tests at loads within the desired load range. This measurement can serve as a starting point for a gearbox’s root cause analysis.
The gear-specific noise has a number of mechanisms. These include the aforementioned transmission error signal and the gear-specific whine.helical gearbox

Applications

Various industries like plastics, printing, cement and other heavy industrial settings use helical gearboxes. Their advantages include low power consumption, quieter operation and high load application. However, there are some limitations. For example, heat generated by sliding contact is a hindrance to efficiency. It should also be noted that gear weight affects the performance of the gear.
There are two ways to mesh helical gears. The first method is to place the shafts oriented at a certain angle of helix, in a mesh. The second method is to place the shafts oriented in a different angle of helix. The difference in angle is referred to as the helix angle.
The helical gearbox is the most widely used gearbox. It is compact in size and works at a high efficiency. It is useful for driving conveyors, coolers and machines. It is also used in automation control systems.
Helical gears are often chosen over spur gears for non-parallel shafts. They are also used in gearboxes for automotive applications and in elevators. They also reduce vibrations.
The gears are made of special teeth that are angled to an axis. They are also cut at an angle. This allows for perpendicular meshing. They can be divided into two basic categories: crossed axis gears and single helical gears. Single helical gears can be right-handed or left-handed. Crossed axis gears are usually used to connect parallel shafts.
China Good quality Right Angle  Gear Motor Belt Conveyor Motor Reducer Helical Bevel Gearbox for Screw Conveyor   helical gears advantages and disadvantagesChina Good quality Right Angle  Gear Motor Belt Conveyor Motor Reducer Helical Bevel Gearbox for Screw Conveyor   helical gears advantages and disadvantages
editor by CX