Tag Archives: speed planetary gearbox

China Hot selling High Precision Speed Reducer 3 to 100 Ratio Helical Gearbox Output Shaft Diameter Planetary Gearbox comer gearbox

Product Description

High Precision speed reducer 3 to 100 ratio helical gearbox output shaft diameter planetary gearbox
 

Components:
1. Gearbox Housing & Flange: Aluminum-alloy Die Casting ADC12
2. Gear set: Precision Planetary Gear Set
Ring Gears: 40Cr
Planetary Gears: 20CrMnTi, Surface Hardness HRC58~62, Inner Hardness HRC33~40
3. Input Configurations: Keyed Hollow Shaft with Motor Adaptor
4. Output Configurations: Keyed CZPT Shaft Output
keyless Solid Shaft Output
5. Applicable Motors:
Servo Motors, Stepper Motors

Features:
1. AOKMAN high precision planetary gearboxes including a full series of inline(linear) and right angle precision planetary gearboxes
2. High precision, high dynamic, low backlash
3. Up to 3 optional backlash: Ultra Precision Backlash, High Precision Backlash, Standard Backlash
4. Superior performance for precision industrial automation and servo applications

 

series Stage Models Ratio Rated Torque Rated input Speed Max input Speed Backlash Efficiency
PPG(Linear) 1 PPG040 3,4,5,7,8,10 9N.m~423N.m 25,003,000,360,040,000,000 3600 ≤10 arcmin ≥97%
PPG060 4800
PPG080 6000
PPG120 8000
PPG160  
2 PPG040 12,15,20,25,30,35,40,50,70,100 9N.m~423N.m 25,003,000,360,040,000,000 3600, ≤15 arcmin ≥94%
PPG060 4800
PPG080 6000
PPG120 8000
PPG160  

1.More than 35 years experience in R&D and manufacturing, export gear motors & industrial gearboxes.
2. Standardization of the gearbox series
3. Strong design capability for large power & customized gearboxes.
4. High quality gearboxes and proven solutions provider.
5. Strict quality control process, stable quality.
6. Less than 2% of the quality complaints.
7. Modular design, short delivery time.
8. Quick response & professional services

AOKMAN was founded in 1982, which has more than 36 years in R & D and manufacturing of gearboxes, gears, shaft, motor and spare parts.
We can offer the proper solution for uncountable applications. Our products are widely used in the ranges of metallurgical, steel, mining, pulp and paper, sugar and alcohol market and various other types of machines with a strong presence in the international market.
AOKMAN has become a reliable supplier, able to supply high quality gearboxes.With 36 years experience, we assure you the utmost reliability and security for both product and services.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Industry
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Single-Step
Customization:
Available

|

Customized Request

helical gearbox

Using Helical Gearboxes for Speed Reduction and Speed Increase

Yes, helical gearboxes can be used for both speed reduction and speed increase in various applications. The design of helical gears allows them to transmit motion and power between non-parallel shafts while changing the rotational speed.

Speed Reduction: When the driving gear (pinion) has fewer teeth than the driven gear, the gear ratio leads to speed reduction. This is commonly used in applications where the input speed needs to be decreased while increasing the output torque. For example, helical gearboxes are often employed in conveyor systems to reduce the speed of the motor while maintaining sufficient torque to move heavy loads.

Speed Increase: Helical gearboxes can also achieve speed increase by having the driving gear (pinion) with more teeth than the driven gear. This configuration is less common but can be used to increase the output speed while sacrificing some torque. Speed increase applications are typically seen in scenarios where higher speeds are required, such as in certain types of machinery or industrial processes.

It’s important to note that while helical gearboxes can perform both speed reduction and speed increase, the specific gear ratios and configurations need to be carefully chosen to ensure efficient and reliable operation for the intended application.

helical gearbox

Software Tools for Simulating Helical Gear Behavior

Several software tools are available for simulating the behavior of helical gears under different conditions. These tools aid engineers in designing and analyzing helical gear systems for optimal performance and reliability. Some notable software tools include:

  • KISSsoft: KISSsoft is a widely used software for the design and analysis of mechanical components, including helical gears. It offers comprehensive calculations for gear geometry, load distribution, contact stresses, and more. The software assists in optimizing gear designs and predicting their behavior under various operating conditions.
  • AGMA Rating Suite: The American Gear Manufacturers Association (AGMA) offers software tools that follow AGMA standards for gear design and analysis. These tools provide accurate calculations for gear rating, efficiency, and durability under different load scenarios.
  • ANSYS Mechanical: ANSYS Mechanical is a versatile simulation software used for finite element analysis (FEA) of mechanical systems, including helical gears. It allows engineers to perform detailed stress and deformation analysis, simulate contact patterns, and assess the effects of different loads and boundary conditions.
  • Gleason CAGE: Gleason’s Computer-Aided Gear Engineering (CAGE) software specializes in gear design and optimization. It offers advanced tools for gear tooth profile generation, simulation of meshing behavior, and optimization of gear parameters.
  • MAGMA Soft: MAGMA Soft provides casting simulation software that can be used to predict the solidification behavior and mechanical properties of casted gear components, which is essential for ensuring quality and performance.
  • Siemens NX: Siemens NX software includes gear design and analysis capabilities, allowing engineers to simulate gear behavior, calculate load distribution, and optimize gear designs within a comprehensive CAD/CAE environment.

These software tools enable engineers to model and analyze helical gears in a virtual environment, helping them make informed design decisions, optimize gear geometry, and assess gear performance under different conditions. By utilizing these tools, engineers can create reliable and efficient helical gear systems for various industrial applications.

helical gearbox

Differences Between Helical Gearboxes and Spur Gearboxes

Helical gearboxes and spur gearboxes are two common types of gearboxes used in various applications. Here are the key differences between them:

  • Tooth Design: The main difference between helical and spur gearboxes lies in their tooth design. Helical gearboxes feature helical teeth that are cut at an angle to the gear axis, while spur gearboxes have straight-cut teeth that run parallel to the gear axis.
  • Engagement: Helical gearboxes offer a gradual and smooth engagement of teeth due to their helical tooth design. This results in reduced noise and vibration compared to spur gearboxes, which can have more abrupt and noisy tooth engagement.
  • Load Distribution: Helical gearboxes have a higher contact ratio between teeth at any given time, which leads to better load distribution across the gear teeth. Spur gearboxes, on the other hand, have fewer teeth in contact at a time, potentially leading to higher stress on individual teeth.
  • Efficiency: Helical gearboxes tend to be more efficient than spur gearboxes due to the helical tooth design, which reduces friction and energy losses during gear meshing. The gradual engagement of helical teeth contributes to this higher efficiency.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to spur gearboxes. The helical tooth design and smooth engagement help in reducing the impact of gear meshing on overall noise levels.
  • Applications: Helical gearboxes are commonly used in applications that require higher torque and smoother operation, such as heavy machinery, automotive transmissions, and industrial equipment. Spur gearboxes are suitable for applications with moderate loads and where noise considerations are not critical.

Overall, helical gearboxes offer advantages in terms of efficiency, load distribution, and noise reduction compared to spur gearboxes. However, the choice between the two depends on specific application requirements and factors such as torque, speed, space constraints, and noise considerations.

China Hot selling High Precision Speed Reducer 3 to 100 Ratio Helical Gearbox Output Shaft Diameter Planetary Gearbox   comer gearbox	China Hot selling High Precision Speed Reducer 3 to 100 Ratio Helical Gearbox Output Shaft Diameter Planetary Gearbox   comer gearbox
editor by CX 2024-05-10

China manufacturer OEM Low Backlash High Torque High Precision Helical Gearbox Planetary Gear Speed Reducers for Servo Motors cvt gearbox

Product Description

Company Profile

CCMS manufactures DC motors, AC motors, planetary gear motors, drum motors, planetary gearboxes, RV reducers and harmonic gearboxes, among others. Through technological innovation and customization, we help you create outstanding applications and provide flexible solutions for a wide range of industrial automation situations. We support custom machining and produce a wide range of parts.

 

Product Selection:
In the selection of products our sales team will help you find the most suitable products and corresponding solutions according to your needs.
Drawing Requirements:
We accept 2D, 3D drawings, and step files. We will produce according to your drawing requirements.
OEM&ODM Services:
We support the drawing processing and sample processing, providing high precision and high quality customized products is our survival.

Product Parameters

Precision Bevel Teeth AB Series Technical Parameters
Rated Output Torque Nm AB60 AB90 AB115 AB142 AB180 Ratio Section
46 125 210 450 650 3 1
52 145 300 550 1250 4
55 155 320 650 1200 5
42 105 220 440 910 10
56 145 310 500 650 15 2
52 155 305 550 1200 25
55 155 320 650 1200 70
55 155 320 650 1200 100

 

Applications

Our products are widely used in mobile robots, logistics sorting, solar photovoltaic, semiconductor equipment, drive technology, machine tools, manufacturing machines, automation equipment, manipulators, wood processing machinery, paper equipment, medical equipment, aerospace industry, etc.

Our Advantages

1. High Precision: back gap is less than 5 arc minutes, accurate positioning.
2. The precision of the gear can be controlled below ISO4 level by using the top ultra-precision machine tool and the world’s leading tooth grinding.
3. The gear material is made of advanced low carbon alloy forged steel. After deed heat treatment, it can reach HRC60.
4. It can be adapted to any servo motor in the world.
5. Using synthetic grease, and adopt IP65 sealing design, no leakage and no maintenance.
6. The cage planetary support structure and the output shaft are integrated to achieve high stiffness and precision.

 

Relevant Products

Factory Showing

 

FAQ

Q: Who are you?
A: We are the OEM Manufacturer of varied kinds of Planetary Gear Reducers, Geaboxes, Bush Motors, Helical Precision Reducers.

Q: How to choose a most suitable Precision Reducer?
A: You can tell me your requirements, such as where does they use, the detailed specifications. Just like like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you support Customization or have standard gear motors?
A: Yes. We accpet customization, just send us your detailed drawings. We also do standard motors, if you need, we can delivery soon.

Q: How about your lead time?
A: The leading time of standard motor in our factory just need 15-30 days. If it is a customized, it may take more time to produce. But, it always according to the orders.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

helical gearbox

Maintenance Tips to Prolong the Lifespan of Helical Gearboxes

Proper maintenance is essential to ensure the longevity and optimal performance of helical gearboxes. Here are some maintenance tips:

  • Regular Inspections: Conduct routine visual inspections to check for any signs of wear, damage, or oil leakage. Detecting issues early can prevent further damage.
  • Lubrication: Follow the manufacturer’s recommendations for lubrication intervals and use the correct type of lubricant. Proper lubrication reduces friction and wear between gear teeth.
  • Cleanliness: Keep the gearbox environment clean and free from contaminants that could enter the gearbox and affect its performance.
  • Tighten Fasteners: Check and tighten any loose fasteners or mounting bolts to ensure the gearbox remains securely in place.
  • Alignment: Properly align the gearbox with connected equipment to prevent excessive loads and wear on the gear teeth.
  • Temperature Monitoring: Monitor the operating temperature of the gearbox. Excessive heat can lead to premature wear and reduced efficiency.
  • Vibration Analysis: Regularly analyze gearbox vibration levels to detect any unusual vibrations that might indicate issues with gear meshing or other components.
  • Seal Integrity: Ensure that seals and gaskets are in good condition to prevent oil leakage and contamination.
  • Load Considerations: Avoid overloading the gearbox beyond its specified capacity. High loads can accelerate wear and damage.

By following these maintenance practices, you can extend the lifespan of helical gearboxes and minimize the risk of unexpected failures. Regular maintenance not only reduces downtime and repair costs but also contributes to the efficient and reliable operation of equipment.

helical gearbox

Helical Gearboxes and Energy Efficiency

Helical gearboxes play a significant role in enhancing energy efficiency in various industrial processes. Their design and operating characteristics contribute to improved efficiency and reduced energy consumption. Here’s how helical gearboxes achieve energy efficiency:

  • Helical Gear Meshing: Helical gears have inclined teeth that engage gradually, resulting in smoother and quieter meshing compared to other gear types. This smoother engagement reduces impact and friction losses, leading to higher efficiency and lower energy consumption.
  • Load Distribution: Helical gears distribute the load across multiple teeth due to their helix angle. This even load distribution minimizes stress concentrations and prevents premature wear, ensuring efficient power transmission and reducing the need for frequent maintenance.
  • Efficient Power Transmission: The inclined tooth profile of helical gears allows for more teeth to be in contact at any given time. This increased contact area improves power transmission efficiency by reducing sliding friction and minimizing energy losses.
  • Reduced Vibration: The helical tooth engagement minimizes vibration and noise levels, which can be particularly advantageous in applications that require precise and stable operation. Reduced vibration translates to lower energy losses and increased overall efficiency.
  • Optimized Gear Design: Engineers can fine-tune helical gear designs by adjusting parameters such as helix angle, number of teeth, and gear materials. This optimization process helps tailor the gearbox for specific applications, ensuring optimal efficiency and minimal energy wastage.
  • Lubrication and Cooling: Proper lubrication and cooling strategies are crucial for maintaining efficiency. Helical gears benefit from efficient lubrication due to their continuous tooth engagement, which helps reduce friction and wear, further enhancing energy efficiency.
  • Advanced Manufacturing: Modern manufacturing techniques enable precise production of helical gears, ensuring tight tolerances and accurate tooth profiles. This manufacturing precision contributes to minimal energy losses during gear operation.

Overall, helical gearboxes excel in energy efficiency by combining smoother tooth engagement, even load distribution, reduced vibration, and optimized designs. Their ability to transmit power efficiently and reliably makes them a preferred choice for industrial processes where energy conservation is a priority.

helical gearbox

Handling High Torque and Heavy Loads in Helical Gearboxes

Helical gearboxes are well-suited for handling high torque and heavy loads due to their unique design and meshing characteristics:

  • Helical Teeth: The helical shape of the gear teeth allows for gradual and continuous contact between the teeth during meshing. This results in smoother load distribution and reduced impact forces, making helical gears capable of handling heavy loads.
  • Multiple Tooth Contact: Helical gears have multiple teeth in contact at any given time, spreading the load over a larger area of gear teeth. This helps to distribute the load evenly and prevent localized wear and stress concentrations.
  • Increased Tooth Strength: The inclined orientation of helical gear teeth increases the tooth width, leading to greater tooth strength and improved load-carrying capacity.
  • Bearings and Shaft Design: The gearbox housing is designed to support heavy loads and provide proper alignment for the shafts and bearings. High-quality bearings and shafts help distribute the load and reduce wear.
  • Lubrication: Adequate lubrication is crucial to minimize friction and heat generation between gear teeth. Proper lubrication also helps to dissipate heat generated by the heavy loads.
  • Material Selection: High-strength materials with good wear resistance properties are chosen for helical gears to ensure they can withstand the demands of heavy loads.

Overall, the gradual engagement of helical gear teeth and their ability to handle multiple tooth contact positions them as a reliable choice for applications that require high torque and can handle heavy loads. Engineers carefully design helical gearboxes to ensure they can withstand the stresses imposed by the application’s specific requirements.

China manufacturer OEM Low Backlash High Torque High Precision Helical Gearbox Planetary Gear Speed Reducers for Servo Motors   cvt gearbox	China manufacturer OEM Low Backlash High Torque High Precision Helical Gearbox Planetary Gear Speed Reducers for Servo Motors   cvt gearbox
editor by CX 2024-04-22

China Good quality CZPT 35: 1 Ratio 400W 750W Servo Motor Helical Planetary Speed Gearbox with Good quality

Product Description

Newgear 35:1 Ratio 400W 750W Servo Motor Helical Planetary Speed Gearbox

Nickel chromium molybdenum allpy steel gear is manufacturered with carburizing heat treatment for high abrasion resistance and impact toughness and by honing process to increase gear prcision and low noise operation.

Product Description

Products fearures:
1.One-piece construction, High Prescision and large output torque
2.Double bracing cage planetary shelf structure , high relible. Can suit reversible rotabtion frequently
3.Helical gear transmission, more reliable. Higher torque
4.Low return backlash,high precision
5.Special Rotation frame structure, can carry bigger Radial&Axial load

Product Parameters

Specifications PX42 PX60 PX90 PX120 PX140 PX180
Technal Parameters
Max. Torque Nm 1.5times rated torque
Emergency Stop Torque Nm 2.5times rated torque
Max. Radial Load N 780 1530 3250 6700 9400 14500
Max. Axial Load N 390 630 1300 3000 4700 7250
Torsional Rigidity Nm/arcmin 2.5 6 12 23 47 130
Max.Input Speed rpm 8000 8000 8000 8000 6000 6000
Rated Input Speed rpm 4000 4000 3000 3000 3000 3000
Noise dB ≤56 ≤58 ≤60 ≤65 ≤68 ≤68
Average Life Time h 20000
Efficiency Of Full Load % L1≥95%       L2≥90%
Return Backlash P1 L1 arcmin / ≤3 ≤3 ≤3 ≤3 ≤3
L2 arcmin / ≤5 ≤5 ≤5 ≤5 ≤5
P2 L1 arcmin ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
L2 arcmin ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Moment Of Inertia Table L1 3 Kg*cm2 / 0.16 0.61 3.25 9.21 28.98
4 Kg*cm2 0.03 0.14 0.48 2.74 7.54 23.67
5 Kg*cm2 0.03 0.13 0.47 2.71 7.42 23.29
7 Kg*cm2 0.03 0.13 0.45 2.62 7.14 22.48
8 Kg*cm2 0.03 0.13 0.45 2.6 / /
10 Kg*cm2 0.03 0.13 0.4 2.57 7.03 22.51
L2 12 Kg*cm2 / 0.13 0.45 0.45 2.63 7.3
15 Kg*cm2 / 0.13 0.45 0.45 2.63 7.3
20 Kg*cm2 0.03 0.13 0.45 0.45 2.63 7.3
25 Kg*cm2 0.03 0.13 0.45 0.4 2.63 7.3
28 Kg*cm2 0.03 0.13 0.45 0.45 2.43 7.1
30 Kg*cm2 / 0.13 0.45 0.45 2.43 6.92
35 Kg*cm2 0.03 0.13 0.4 0.4 2.43 7.1
40 Kg*cm2 0.03 0.13 0.45 0.45 2.43 6.92
50 Kg*cm2 0.03 0.13 0.4 0.4 2.39 6.92
70 Kg*cm2 0.03 0.13 0.4 0.4 2.39 6.72
100 Kg*cm2 0.03 0.13 0.4 0.4 2.39 6.72
Technical Parameter Level Ratio   PX42 PX60 PX90 PX120 PX140 PX180
Rated Torque L1 3 Nm / 40 105 165 360 880
4 Nm 17 45 130 230 480 880
5 Nm 15 45 130 230 480 1100
7 Nm 12 45 100 220 480 1100
8 Nm / 40 90 200 / /
10 Nm 10 30 75 175 360 770
L2 12 Nm / 40 105 165 440 880
15 Nm / 40 105 165 360 880
20 Nm 17 45 130 230 480 880
25 Nm 15 45 130 230 480 880
28 Nm 17 45 130 230 480 1100
30 Nm / 40 105 165 480 1100
35 Nm 10 30 130 230 480 1100
40 Nm 17 45 130 230 480 1100
50 Nm 15 45 130 230 480 1100
70 Nm 12 45 100 220 480 1100
100 Nm 10 30 75 175 360 770
Degree Of Protection   IP65
Operation Temprature ºC  – 10ºC to -90ºC
Weight L1 kg 0.5 1.25 3.75 8.5 16 28.5
L2 kg 0.8 1.75 5.1 12 21.5 40

Company Profile

Packaging & Shipping

1. Lead time: 7-10 working days as usual, 20 working days in busy season, it will be based on the detailed order quantity;
2. Delivery: DHL/ UPS/ FEDEX/ EMS/ TNT

FAQ

1. who are we?
Hefa Group is based in ZheJiang , China, start from 1998,has a 3 subsidiaries in total.The Main Products is planetary gearbox,timing belt pulley, helical gear,spur gear,gear rack,gear ring,chain wheel,hollow rotating platform,module,etc

2. how can we guarantee quality?
Always a pre-production sample before mass production;
Always final Inspection before shipment;

3. how to choose the suitable planetary gearbox?
First of all,we need you to be able to provide relevant parameters.If you have a motor drawing,it will let us recommend a suitable gearbox for you faster.If not,we hope you can provide the following motor parameters:output speed,output torque,voltage,current,ip,noise,operating conditions,motor size and power,etc

4. why should you buy from us not from other suppliers?
We are 22 years experiences manufacturer on making the gears, specializing in manufacturing all kinds of spur/bevel/helical gear, grinding gear, gear shaft, timing pulley, rack, planetary gear reducer, timing belt and such transmission gear parts

5. what services can we provide?
Accepted Delivery Terms: Fedex,DHL,UPS;
Accepted Payment Currency:USD,EUR,HKD,GBP,CNY;
Accepted Payment Type: T/T,L/C,PayPal,Western Union;
Language Spoken:English,Chinese,Japanese

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Motorcycle, Machinery, Marine, Agricultural Machinery, Textile Machinery
Function: Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Single-Step
Samples:
US$ 153/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Comparison of Helical Gearboxes and Bevel Gearboxes

Helical gearboxes and bevel gearboxes are both widely used for power transmission in various industrial applications. Here’s a comparison of their performance:

  • Gear Meshing: Helical gearboxes use helical gears with inclined teeth that gradually engage, resulting in smoother and quieter operation compared to the more abrupt engagement of straight-cut bevel gears.
  • Efficiency: Helical gearboxes generally offer higher efficiency due to their helical gear design, which distributes loads evenly across the teeth. Bevel gearboxes can have slightly lower efficiency due to the sliding action of gear teeth during engagement.
  • Load Capacity: Helical gearboxes can handle higher loads and torque due to the larger contact area of the gear teeth. Bevel gearboxes are suitable for moderate loads and applications where the direction of power transmission needs to be changed.
  • Space Efficiency: Bevel gearboxes are often more compact and suitable for applications where space is limited and a change in direction is required. Helical gearboxes may require more space due to the parallel shaft arrangement.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to straight-cut bevel gearboxes. Bevel gearboxes can be noisier, especially at higher speeds.
  • Application: Helical gearboxes are commonly used in applications requiring smooth and efficient power transmission, such as conveyors, pumps, and mixers. Bevel gearboxes are preferred for applications where changes in direction are necessary, such as in automotive differentials and printing presses.

Ultimately, the choice between helical and bevel gearboxes depends on the specific requirements of the application, including load capacity, space constraints, efficiency goals, and the need for directional changes in power transmission.

helical gearbox

Troubleshooting Common Issues in Helical Gear Systems

Troubleshooting helical gear systems involves identifying and addressing common issues that can affect their performance. Here’s a step-by-step process:

  1. Visual Inspection: Begin by visually inspecting the gearbox for any signs of wear, damage, or misalignment. Look for worn or chipped gear teeth, oil leakage, and unusual noise.
  2. Noise Analysis: If noise is present, analyze its type and frequency. Whining or grinding noises could indicate misalignment or damaged gears, while clicking or knocking sounds might point to loose components.
  3. Lubrication Check: Ensure that the gearbox is properly lubricated with the recommended type and quantity of lubricant. Insufficient lubrication can lead to increased friction and wear.
  4. Alignment Check: Check the alignment of the gears and shafts. Misalignment can result in uneven wear, noise, and reduced efficiency. Realign components if necessary.
  5. Gear Inspection: Inspect gear teeth for signs of pitting, scoring, or wear. Replace any damaged gears to prevent further issues.
  6. Bearing Examination: Check the condition of bearings that support shafts and gears. Worn or damaged bearings can lead to increased vibration and noise.
  7. Tightening and Fastening: Ensure that all bolts, fasteners, and connections are properly tightened. Loose components can cause vibrations and noise.
  8. Load Analysis: Evaluate the load conditions and operating parameters of the gearbox. Ensure that the gearbox is not subjected to loads beyond its design capacity.
  9. Temperature Monitoring: Monitor the operating temperature of the gearbox. Excessive heat can indicate problems such as inadequate lubrication or overloading.
  10. Consulting Experts: If issues persist or if you’re unsure about the diagnosis and solution, consult gearbox experts or manufacturers for guidance.

By following this troubleshooting process, you can identify and resolve common issues in helical gear systems, ensuring optimal performance and longevity.

helical gearbox

Advantages of Helical Gearboxes in Industrial Applications

Helical gearboxes offer several advantages that make them well-suited for a wide range of industrial applications. Here are some of the key advantages:

  • Smooth and Quiet Operation: The helical design of the gears results in gradual tooth engagement, reducing noise and vibration during operation. This makes helical gearboxes ideal for applications where noise reduction is important.
  • High Efficiency: Helical gears provide a larger contact area compared to straight-cut gears, leading to improved power transmission efficiency. The gradual engagement of teeth also reduces energy losses due to friction.
  • Higher Load Capacity: The helical angle allows for multiple teeth to be engaged simultaneously, distributing the load across a larger area. This results in higher load-carrying capacity and increased durability of the gearbox.
  • Compact Design: Helical gearboxes can achieve high gear ratios with fewer gear stages, leading to a more compact overall design. This is advantageous in applications where space is limited.
  • Wide Range of Ratios: Helical gearboxes can achieve a wide range of gear ratios, making them versatile for various speed and torque requirements.
  • Less Backlash: The gradual tooth engagement of helical gears results in reduced backlash, which is the play between gear teeth. This leads to improved accuracy and positioning in applications that require precise motion control.
  • Heat Dissipation: The helical design allows for better heat dissipation due to the continuous contact between gear teeth. This is beneficial in high-speed applications where heat generation can be a concern.
  • Highly Customizable: Helical gearboxes can be customized to meet specific application requirements, including input and output configurations, gear ratios, and mounting options.

Overall, the advantages of helical gearboxes make them a popular choice in industries such as manufacturing, automation, robotics, material handling, and more.

China Good quality CZPT 35: 1 Ratio 400W 750W Servo Motor Helical Planetary Speed Gearbox   with Good quality China Good quality CZPT 35: 1 Ratio 400W 750W Servo Motor Helical Planetary Speed Gearbox   with Good quality
editor by CX 2024-04-08

China OEM 2 Speed Reducer Zplf120 Planetary Gearbox with Hot selling

Product Description

Relate recommend ?
Planetary gearbox : size 242 and custom size  within 1 stage, 2 stage, 3 stage.
Ac servo motor :Delta, Yasakawa,Panasonic, Mistubishi and economic type
PLC: CZPT semensis Mistubishi and etc
Linear Components: HIWIN, TBI, PMI, ABBA, THK, CPC , and economic type.

2 Speed Reducer ZPLF120 Planetary Gearbox

-Planetary gearbox is a widely used industrial product, which can reduce the speed of motor and increase the output torque. Planetary reducer can be used as supporting parts in lifting, excavation, transportation, construction and other industries.

-Stage Ratio :12,16,20,25,28,35,40,50,70
-Net Weight: 13.7Kg
-Product picture

-Datasheet

-Company introduction
FOCUS is an automation & drive focused global company, providing global customers with control, display, drive and system solutions & other related products and services, under the support of its excellent electrical and electronic technology as well as strong control technical force.
 
We provide and develop perfect products and solutions according to different requirement of the industry. Our products have been used and applied successfully in packing, printing, textiles, plastic injection, elevator, machine tool, robot,wood cutting, stone carving, ceramic, glass, paper making industry, crane, fan & pump, new energy resources etc.

FOCUS, your professional electrical partner !

-Payment & Package & Delivery 
1,Payment
( T/T , Western union, Paypal , L/C and so on )
2,Pakcage
( Small gearbox use carton package, Big gearbox use wooden box package ) 
3,Delivery
( By International Express,  By Air , By Sea )

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Conical – Cylindrical Gear
Step: Double-Step
Customization:
Available

|

Customized Request

helical gearbox

Performance of Helical Gearboxes in Applications Requiring Frequent Starts and Stops

Helical gearboxes are well-suited for applications that involve frequent starts and stops due to their design characteristics. Here’s how they fare in such scenarios:

  • Smooth Engagement: Helical gears offer gradual and smooth engagement, which reduces shock loads during starts and stops. This feature helps minimize wear and stress on gear teeth and other components.
  • Noise and Vibration Reduction: The helical tooth arrangement results in less noise and vibration compared to other gear types. This is especially beneficial in applications where noise reduction is a priority.
  • Efficient Power Transmission: Helical gears efficiently transmit power even during frequent starts and stops. The gradual contact between gear teeth and the larger tooth engagement area contribute to efficient power transfer.
  • Less Backlash: Helical gearboxes typically have lower backlash compared to other gear types. This means there’s less play between gear teeth, resulting in more accurate and consistent motion control.
  • Heat Dissipation: The helical tooth design distributes loads and heat more evenly, which can help dissipate heat generated during frequent starts and stops.
  • Longevity: The reduced wear and improved load distribution contribute to the longevity of helical gearboxes, making them suitable for applications requiring frequent cyclic motion.

In summary, helical gearboxes perform well in applications involving frequent starts and stops. Their smooth engagement, reduced noise and vibration, efficient power transmission, and durability make them a reliable choice for industries that demand precise and controlled motion despite frequent changes in speed and direction.

helical gearbox

Impact of Thermal Expansion on Helical Gearbox Performance

Thermal expansion can significantly affect the performance of helical gearboxes due to changes in dimensions and clearances caused by temperature variations. Here’s how it impacts:

1. Misalignment: Temperature changes can lead to differential expansion of gearbox components. This can result in misalignment of gears, shafts, and bearings, leading to increased friction, noise, and reduced efficiency.

2. Lubrication: Thermal expansion can alter the clearances within the gearbox, affecting the distribution and viscosity of the lubricating oil. Inadequate lubrication due to temperature-induced changes can result in increased wear and premature failure.

3. Gear Tooth Engagement: Temperature fluctuations can cause gear teeth to expand or contract, affecting the meshing engagement and load distribution. Inconsistent gear tooth contact can lead to uneven wear and reduced gear life.

4. Bearing Performance: Bearings in helical gearboxes are sensitive to temperature changes. Excessive heat can lead to reduced bearing life, increased friction, and potential seizure, affecting overall gearbox performance.

5. Noise and Vibration: Thermal expansion can lead to changes in gear and component clearances, resulting in altered vibration patterns and increased noise levels. This can impact the comfort of the system and indicate potential issues.

6. Material Fatigue: Repeated cycles of thermal expansion and contraction can lead to material fatigue and stress accumulation, reducing the overall lifespan of gearbox components.

Managing Thermal Effects: Manufacturers design helical gearboxes with considerations for thermal expansion, using materials with low coefficients of thermal expansion and incorporating features like expansion joints or thermal isolators. Proper lubrication, monitoring temperature, and maintaining consistent operating conditions are also crucial in mitigating thermal expansion effects.

Understanding and managing the impact of thermal expansion is essential to maintain the performance, efficiency, and durability of helical gearboxes.

helical gearbox

Limitations and Disadvantages of Helical Gear Systems

While helical gear systems offer numerous advantages, they also come with certain limitations and disadvantages:

  • Axial Thrust: Helical gears generate axial thrust due to the helix angle of the teeth. This thrust can cause additional load on bearings and may require additional measures to counteract.
  • Complex Manufacturing: The manufacturing process for helical gears is more complex than that of straight-toothed gears, which can lead to higher production costs.
  • Axial Length: Helical gears require more axial space compared to spur gears with the same gear ratio. This can be a limitation in applications with space constraints.
  • Sliding Contact: Helical gears have sliding contact between their teeth, which can result in higher friction and more heat generation compared to rolling contact gears.
  • Efficiency: Although helical gears are generally efficient, their efficiency can be slightly lower than that of some other gear types, especially at high speeds.
  • Complexity in Gearbox Design: The inclination of helical gear teeth introduces additional complexity in gearbox design and alignment.
  • Reverse Thrust: In some cases, reverse thrust can occur when helical gears are subjected to high axial loads, leading to undesirable effects.

It’s important to consider these limitations and disadvantages when selecting gear systems for specific applications. Despite these challenges, helical gears remain a popular choice in various industries due to their benefits and overall performance characteristics.

China OEM 2 Speed Reducer Zplf120 Planetary Gearbox   with Hot selling		China OEM 2 Speed Reducer Zplf120 Planetary Gearbox   with Hot selling
editor by CX 2024-04-03

China manufacturer High Torque Ab Series Planetary Gearbox Helical Bevel Planetary Speed Reducer Gearboxes differential gearbox

Product Description

Planetary Gearbox AB Series Square Flange Helical Bevel Planetary Transmission Gearboxes Servo Motor

Product Overview:

 

Precision planetary gear reducer is another name for planetary gear reducer in the industry. Its main transmission structure is planetary gear, sun gear and inner gear ring.

Compared with other gear reducers, precision planetary gear reducers have the characteristics of high rigidity, high precision (single stage can achieve less than 1 point), high transmission efficiency (single stage can achieve 97% – 98%), high torque/volume ratio, lifelong maintenance-free, etc. Most of them are installed on stepper motor and servo motor to reduce speed, improve torque and match inertia.

Planetary Gearbox AB Series Square Flange Helical Bevel Planetary Transmission Gearboxes Servo Motor
Advantages of the planetary gearbox:

Low backlash

High Efficiency

High Torque

High Input Speed

High Stability

High Reduction Ratio

Detailed Photos

 

Product Parameters

 

Name

High Precision Planetary Gearbox

Model

AB042, AB060, AB060A, AB090A, AB115, AB142, AB180, AB220

Gearing Arrangement

Planetary

Effeiency withfull load

≥97

Backlash

≤5

Weight

0.5~48kg

Gear Type

Helical Gear

Gear stages

1 stage, 2 stage 

Rated Torque

14N.m-2000N.m

Gear Ratio One-stage

3, 4, 5, 6, 7, 8, 9, 10

Gear Ratio Two-stage

15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100

Mounting Position

Horizontal (foot mounted) or Vertical (flange mounted)

Usage

stepper motor, servo motor, AC motor, DC motor, etc

Various reduction ratios available. Please contact us. We will provide you with appropriate reduction gearbox according to your motor power

External Mounting Dimensions
1 stage reduction ratio 3~10
2 stage reduction ratio 15~100

features:

AB-series reducer features:

1. Helical gear design The reduction mechanism adopts the helical gear design, and its tooth shape meshing rate is more than twice that of the general spur gear, and has the characteristics of smooth operation, low noise, high output torque and low backlash

2. Collet type locking mechanism The connection between the input end and the motor adopts a collet-type locking mechanism and undergoes dynamic balance analysis to ensure the concentricity of the joint interface and zero-backlash power transmission at high input speeds
3. Modular design of motor connection board The unique modular design of the motor connecting plate and shaft is suitable for any brand and type of servo motor;
4. Efficient surface treatment technology The surface of the gearbox is treated with electroless nickel, and the connecting plate of the motor is treated with black anodic treatment to improve the environmental tolerance and corrosion resistance
5. One-piece gearbox body The gearbox and the inner ring gear adopt an integrated design, with compact structure, high precision and large output torque

 

6. Accurate concentricity of gear bar The sun gear made of the whole gear bar has strong rigidity and accurate concentricity
7. Solid, Single piece sun gear construction obtains precise concentricity with increased strength and rigidity. 8.Precision taper roller bearing support to increases radial and axial loading capacity.

Our Advantages

 

SERIES: AB/ ABR/ AD/ADS/ ADR/ AF/ AFR/ AFX/ AFXR/ AE/ AER/ AE/ AERS


PLF series, PLE series, ZPLF series, ZPLE series, AB series, ABR series and many other models are available.

 

 

 

Applications

 

 

Company Profile

Certifications

Packaging & Shipping

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Planetary
Step: Single-Step
Type: Ab Series Gearbox, Gear Reducer
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Role of Helical Gearboxes in Automotive Transmissions

Helical gearboxes play a crucial role in automotive transmissions, contributing to the efficient power transfer and smooth operation of vehicles:

  • Power Transmission: Helical gearboxes are used to transmit power from the engine to the wheels through different gear ratios. They help in converting the high-speed, low-torque output of the engine into the appropriate speed and torque for the wheels.
  • Smooth Shifting: In manual and automatic transmissions, helical gears are often used to provide smooth and quiet gear shifts. The gradual engagement of helical gear teeth helps in reducing the shock and noise associated with gear changes.
  • Noise Reduction: Helical gears are known for their quieter operation compared to other gear types. This is especially important in automotive applications where minimizing noise and vibration is desired for a comfortable driving experience.
  • Efficiency: The efficiency of helical gearboxes helps in optimizing fuel efficiency and reducing energy losses. This is crucial for improving the overall performance and economy of vehicles.
  • Load Distribution: Helical gears distribute the load over multiple teeth, reducing wear and ensuring the gearbox’s longevity. This is important in vehicles that experience varying loads and driving conditions.
  • Torque Handling: Helical gears can handle higher torque loads compared to some other gear types. This is essential for vehicles, especially those with powerful engines, towing capabilities, or off-road use.

In modern automotive transmissions, helical gearboxes can be found in various components, including the main transmission, differential, and gearbox synchronizers. They contribute to the smooth operation, improved fuel efficiency, and overall performance of vehicles. The design and arrangement of helical gears can be tailored to meet the specific requirements of different vehicle types, making them a versatile choice for automotive applications.

helical gearbox

Relationship Between Helix Angle and Load Capacity in Helical Gears

The helix angle of helical gears plays a significant role in determining their load-carrying capacity and overall performance. Here’s the relationship between the helix angle and load capacity:

1. Load Distribution: The helix angle affects how the load is distributed along the gear teeth. A larger helix angle results in a more gradual tooth engagement, allowing for smoother load sharing across multiple teeth. This improves the gear’s ability to handle higher loads.

2. Contact Ratio: The contact ratio, which indicates the number of teeth in contact at any given time, increases with a larger helix angle. A higher contact ratio helps distribute the load over a larger area of the gear teeth, enhancing load-carrying capacity.

3. Tooth Meshing: The helix angle affects how the teeth mesh with each other. A higher helix angle promotes gradual and smoother meshing, reducing the concentration of stress on individual teeth. This results in improved resistance to wear and fatigue.

4. Axial Thrust: Helical gears produce axial thrust due to their helical nature. This thrust can affect the gear’s ability to handle radial loads. Proper consideration of the helix angle can help manage axial thrust and prevent overloading.

5. Lubrication: The helix angle affects the lubrication conditions between gear teeth. A larger helix angle may allow better oil flow and lubrication, reducing friction and wear, thereby enhancing load capacity.

6. Noise and Vibration: The helix angle also influences noise and vibration levels in helical gears. Optimal helix angle selection can minimize noise and vibration, contributing to smoother operation and prolonged gear life.

Optimal Helix Angle Selection: While a larger helix angle generally increases load capacity, it’s important to strike a balance. Extremely large helix angles can lead to reduced tooth strength and efficiency. Engineers consider factors like application requirements, tooth strength, and noise considerations when selecting the optimal helix angle for a specific gear design.

The relationship between the helix angle and load capacity underscores the importance of proper gear design to ensure optimal performance, durability, and reliability in various applications.

helical gearbox

Industries Utilizing Helical Gearboxes

Helical gearboxes find widespread use in various industries due to their efficiency, smooth operation, and versatility. Some of the industries that commonly utilize helical gearboxes include:

  • Manufacturing: Helical gearboxes are employed in manufacturing processes for conveyor systems, material handling, and machine tools. Their ability to provide high torque and smooth motion makes them suitable for precision manufacturing.
  • Automotive: Automotive applications include power transmission in vehicles, especially in manual and automatic transmissions. Helical gearboxes contribute to improved fuel efficiency and smoother gear shifting.
  • Energy Generation: Helical gearboxes are used in power generation systems, such as wind turbines and hydroelectric generators. Their efficiency and load-bearing capacity are crucial for converting rotational motion into electrical power.
  • Construction: Construction equipment, such as cranes, excavators, and bulldozers, rely on helical gearboxes for efficient power transmission and control of heavy loads.
  • Mining: Mining operations use helical gearboxes in conveyors, crushers, and other equipment for material handling and ore extraction. The durability and high torque capacity of helical gearboxes make them suitable for demanding mining environments.
  • Marine: Marine vessels use helical gearboxes in propulsion systems to convert engine power into rotational motion for propellers. Their efficiency contributes to fuel savings and reliable marine operation.
  • Food and Beverage: Helical gearboxes are employed in food processing and packaging machinery due to their sanitary design and precise motion control.
  • Textile: Textile machinery relies on helical gearboxes for various processes, including spinning, weaving, and dyeing. Their ability to handle varying loads and provide smooth motion is beneficial in textile production.

The adaptability and efficiency of helical gearboxes make them a suitable choice for a wide range of industries, where reliable power transmission, smooth operation, and load-bearing capacity are essential.

China manufacturer High Torque Ab Series Planetary Gearbox Helical Bevel Planetary Speed Reducer Gearboxes   differential gearbox	China manufacturer High Torque Ab Series Planetary Gearbox Helical Bevel Planetary Speed Reducer Gearboxes   differential gearbox
editor by CX 2024-03-12

China Custom High Precision Low Backlash Helical Gear Planetary Speed Reducer Gearbox for Servo Motor Manipulator Mechanical Arm best automatic gearbox

Product Description

TaiBang Motor Industry Group Co., Ltd.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

Model Instruction
 

GB 090 571 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
571 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

Main Technical Performance
 

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

 

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

 Noise test standard:Distance 1m,no load.Measured with an input speed 3000rpm 

 

Application: Machinery, Agricultural Machinery, Automatic Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Role of Helical Gearboxes in Automotive Transmissions

Helical gearboxes play a crucial role in automotive transmissions, contributing to the efficient power transfer and smooth operation of vehicles:

  • Power Transmission: Helical gearboxes are used to transmit power from the engine to the wheels through different gear ratios. They help in converting the high-speed, low-torque output of the engine into the appropriate speed and torque for the wheels.
  • Smooth Shifting: In manual and automatic transmissions, helical gears are often used to provide smooth and quiet gear shifts. The gradual engagement of helical gear teeth helps in reducing the shock and noise associated with gear changes.
  • Noise Reduction: Helical gears are known for their quieter operation compared to other gear types. This is especially important in automotive applications where minimizing noise and vibration is desired for a comfortable driving experience.
  • Efficiency: The efficiency of helical gearboxes helps in optimizing fuel efficiency and reducing energy losses. This is crucial for improving the overall performance and economy of vehicles.
  • Load Distribution: Helical gears distribute the load over multiple teeth, reducing wear and ensuring the gearbox’s longevity. This is important in vehicles that experience varying loads and driving conditions.
  • Torque Handling: Helical gears can handle higher torque loads compared to some other gear types. This is essential for vehicles, especially those with powerful engines, towing capabilities, or off-road use.

In modern automotive transmissions, helical gearboxes can be found in various components, including the main transmission, differential, and gearbox synchronizers. They contribute to the smooth operation, improved fuel efficiency, and overall performance of vehicles. The design and arrangement of helical gears can be tailored to meet the specific requirements of different vehicle types, making them a versatile choice for automotive applications.

helical gearbox

Helical Gearboxes and Energy Efficiency

Helical gearboxes play a significant role in enhancing energy efficiency in various industrial processes. Their design and operating characteristics contribute to improved efficiency and reduced energy consumption. Here’s how helical gearboxes achieve energy efficiency:

  • Helical Gear Meshing: Helical gears have inclined teeth that engage gradually, resulting in smoother and quieter meshing compared to other gear types. This smoother engagement reduces impact and friction losses, leading to higher efficiency and lower energy consumption.
  • Load Distribution: Helical gears distribute the load across multiple teeth due to their helix angle. This even load distribution minimizes stress concentrations and prevents premature wear, ensuring efficient power transmission and reducing the need for frequent maintenance.
  • Efficient Power Transmission: The inclined tooth profile of helical gears allows for more teeth to be in contact at any given time. This increased contact area improves power transmission efficiency by reducing sliding friction and minimizing energy losses.
  • Reduced Vibration: The helical tooth engagement minimizes vibration and noise levels, which can be particularly advantageous in applications that require precise and stable operation. Reduced vibration translates to lower energy losses and increased overall efficiency.
  • Optimized Gear Design: Engineers can fine-tune helical gear designs by adjusting parameters such as helix angle, number of teeth, and gear materials. This optimization process helps tailor the gearbox for specific applications, ensuring optimal efficiency and minimal energy wastage.
  • Lubrication and Cooling: Proper lubrication and cooling strategies are crucial for maintaining efficiency. Helical gears benefit from efficient lubrication due to their continuous tooth engagement, which helps reduce friction and wear, further enhancing energy efficiency.
  • Advanced Manufacturing: Modern manufacturing techniques enable precise production of helical gears, ensuring tight tolerances and accurate tooth profiles. This manufacturing precision contributes to minimal energy losses during gear operation.

Overall, helical gearboxes excel in energy efficiency by combining smoother tooth engagement, even load distribution, reduced vibration, and optimized designs. Their ability to transmit power efficiently and reliably makes them a preferred choice for industrial processes where energy conservation is a priority.

helical gearbox

Helical Gearbox: Overview and Working Mechanism

A helical gearbox is a type of mechanical device used to transmit power and motion between rotating shafts. It employs helical gears, which are cylindrical gears with teeth that are cut at an angle to the gear axis. This design feature gives helical gearboxes their distinctive helical shape and provides several advantages in terms of efficiency, smoothness, and load-bearing capabilities.

The working mechanism of a helical gearbox involves the interaction of helical gears, which mesh together to transmit torque and motion. Here’s how it works:

  1. Gear Tooth Engagement: When power is applied to the input shaft of the gearbox, the helical gear on the input shaft meshes with the helical gear on the output shaft.
  2. Helical Angle: The helical angle of the gear teeth causes a gradual engagement between the teeth, resulting in a smooth and quiet meshing process compared to straight-cut gears.
  3. Torque Transfer: As the input gear rotates, it transfers rotational force (torque) to the output gear through the meshing of their helical teeth.
  4. Direction of Rotation: Depending on the arrangement of the helical gears, the output shaft’s direction of rotation can be the same as or opposite to that of the input shaft.
  5. Load Distribution: The helical design allows for multiple teeth to be engaged at any given moment, distributing the load more evenly across the gears. This results in higher load-carrying capacity and reduced wear on gear teeth.
  6. Efficiency: Helical gearboxes are known for their high efficiency due to the gradual tooth engagement and larger contact area, resulting in minimal energy loss as compared to other gear types.

Helical gearboxes find applications in various industries where smooth operation, high efficiency, and compact design are important. They are commonly used in machinery, conveyors, automotive transmissions, industrial equipment, and more.

China Custom High Precision Low Backlash Helical Gear Planetary Speed Reducer Gearbox for Servo Motor Manipulator Mechanical Arm   best automatic gearbox	China Custom High Precision Low Backlash Helical Gear Planetary Speed Reducer Gearbox for Servo Motor Manipulator Mechanical Arm   best automatic gearbox
editor by CX 2023-12-15

China wholesaler CZPT RC Helical Gear Box Shaft Mounted Speed Reducer Helical Gearbox for Packing Machine planetary gearbox

Product Description

GPHQ RC helical gearbox motor/ reducer motor

GPHQ RC helical speed gearbox motor  units are novel transmission device and composed of Y series motor, helical gear, Glisten arc cone gear and warm gear. The gears are made of high wear-resisting alloy materials, specially treated and finely processed.

GPHQ RC helical gear box motor can be single-stage or multi stage with both mounting ways foot-mounted and flange-mounted. For high output speeds, the exclusively single-stage gear units R27-RX167 offer compact solutions for your system design. As for the two-stage and three-stage, 

GPHQ RC helical speed reducer motor is based on the unique modulation combination system, so it is convenient for them to fit all types of motors or to connect with other power input. The same type of reducer can fit motors with different power, so that its possible for different types of machines to combine or connect.

 Our  reduction geared motor Advantage

1,reasonable price with excellent quality 
2,delivery in time 
3,safe ,reliable ,economical and durable 
4,stable transmission ,quiet operation 
5,smooth running and low noise 
6,nice appearance ,durable service life 
7,high heat-radiating efficiency ,high carrying ability 
8,each gearbox must be tested before packing
9.reply in high efficiency during 1 working day 
10. professional to produce gearbox and electric motor .

If there is any question, please don’t hesitate to contact with me (EVA), U can send us your inquiry. And you will get response in 1 working day.
 
MOTOR CATALOGUE :

PACKAGE : 

for 1 container, directly loading ,for less, all goods with pallet.
 

FAQ
1, Q:what\’s your MOQ for ac gearbox motor  ?
A: 1pc is ok for each type electric gear box  motor 

2, Q: What about your warranty for your induction speed reducer motor ?
A: 1 year ,but except man-made destroyed

3, Q: which payment way you can accept ?
A: TT, western union .

4, Q: how about your payment way ?
A: 100%payment in advanced less $5000 ,30% payment in advanced payment , 70% payment before sending over $5000.

5, Q: how about your packing of speed reduction motor  ?
A: plywood case ,if size is small  ,we will pack with pallet for less 1 container 

6, Q: What information should be given, if I buy electric helical geared motor  from you ?
A: rated power,  ratio or output speed,type ,voltage , mounting way , quantity , if more is better , 
 

Application: Motor, Machinery, Agricultural Machinery
Layout: Helical
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Single-Step
Type: Helical
Customization:
Available

|

Customized Request

helical gearbox

Comparison of Helical Gearboxes and Bevel Gearboxes

Helical gearboxes and bevel gearboxes are both widely used for power transmission in various industrial applications. Here’s a comparison of their performance:

  • Gear Meshing: Helical gearboxes use helical gears with inclined teeth that gradually engage, resulting in smoother and quieter operation compared to the more abrupt engagement of straight-cut bevel gears.
  • Efficiency: Helical gearboxes generally offer higher efficiency due to their helical gear design, which distributes loads evenly across the teeth. Bevel gearboxes can have slightly lower efficiency due to the sliding action of gear teeth during engagement.
  • Load Capacity: Helical gearboxes can handle higher loads and torque due to the larger contact area of the gear teeth. Bevel gearboxes are suitable for moderate loads and applications where the direction of power transmission needs to be changed.
  • Space Efficiency: Bevel gearboxes are often more compact and suitable for applications where space is limited and a change in direction is required. Helical gearboxes may require more space due to the parallel shaft arrangement.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to straight-cut bevel gearboxes. Bevel gearboxes can be noisier, especially at higher speeds.
  • Application: Helical gearboxes are commonly used in applications requiring smooth and efficient power transmission, such as conveyors, pumps, and mixers. Bevel gearboxes are preferred for applications where changes in direction are necessary, such as in automotive differentials and printing presses.

Ultimately, the choice between helical and bevel gearboxes depends on the specific requirements of the application, including load capacity, space constraints, efficiency goals, and the need for directional changes in power transmission.

helical gearbox

Handling Shock Loads and Sudden Changes in Torque in Helical Gearboxes

Helical gearboxes are designed to handle a range of operational conditions, including shock loads and sudden changes in torque. The helical design of the gears, which have slanted teeth that engage gradually, helps to distribute forces more evenly across the teeth compared to straight-cut gears. This design characteristic contributes to the gearbox’s ability to withstand sudden changes in torque and shock loads.

The gradual engagement of the helical teeth results in smoother and quieter operation, reducing the impact of abrupt torque changes. The slanted teeth also allow for more gradual transmission of force, which helps in dampening vibrations and minimizing stress concentrations that can occur in high-impact situations.

However, while helical gears are better suited for shock loads compared to straight-cut gears, it’s important to note that extreme shock loads or sudden torque changes can still impact the gearbox’s components over time. Manufacturers often take factors such as application requirements, load profiles, and anticipated shock loads into consideration when designing helical gearboxes to ensure reliable and durable performance.

Additionally, using appropriate lubrication and maintenance practices can further enhance the gearbox’s ability to handle shock loads and sudden torque changes. Regular inspection and timely maintenance help identify and address potential issues before they lead to component failure.

helical gearbox

Helical Gearbox: Overview and Working Mechanism

A helical gearbox is a type of mechanical device used to transmit power and motion between rotating shafts. It employs helical gears, which are cylindrical gears with teeth that are cut at an angle to the gear axis. This design feature gives helical gearboxes their distinctive helical shape and provides several advantages in terms of efficiency, smoothness, and load-bearing capabilities.

The working mechanism of a helical gearbox involves the interaction of helical gears, which mesh together to transmit torque and motion. Here’s how it works:

  1. Gear Tooth Engagement: When power is applied to the input shaft of the gearbox, the helical gear on the input shaft meshes with the helical gear on the output shaft.
  2. Helical Angle: The helical angle of the gear teeth causes a gradual engagement between the teeth, resulting in a smooth and quiet meshing process compared to straight-cut gears.
  3. Torque Transfer: As the input gear rotates, it transfers rotational force (torque) to the output gear through the meshing of their helical teeth.
  4. Direction of Rotation: Depending on the arrangement of the helical gears, the output shaft’s direction of rotation can be the same as or opposite to that of the input shaft.
  5. Load Distribution: The helical design allows for multiple teeth to be engaged at any given moment, distributing the load more evenly across the gears. This results in higher load-carrying capacity and reduced wear on gear teeth.
  6. Efficiency: Helical gearboxes are known for their high efficiency due to the gradual tooth engagement and larger contact area, resulting in minimal energy loss as compared to other gear types.

Helical gearboxes find applications in various industries where smooth operation, high efficiency, and compact design are important. They are commonly used in machinery, conveyors, automotive transmissions, industrial equipment, and more.

China wholesaler CZPT RC Helical Gear Box Shaft Mounted Speed Reducer Helical Gearbox for Packing Machine   planetary gearbox	China wholesaler CZPT RC Helical Gear Box Shaft Mounted Speed Reducer Helical Gearbox for Packing Machine   planetary gearbox
editor by CX 2023-11-18

China supplier Desboer ND110 Series Ratio16-100 Helical Precision Speed Reducer Planetary Gearbox for Servo Stepper Motor Tool Industrial Automation Robotics Laser Cutting Mac gearbox assembly

Product Description

Product Description

The ND110 series planetary gearboxes are designed and machined as a single unit with special tapered roller bearings to provide high radial load, high torque, ultra-precision, and small size. The ND series uses in highly rigid industries such as fiber optic laser equipment, floor track equipment, robot seventh axis, Parallel robots (spider hand) machine tools, and rotating arms.
Product Name: High Precision Planetary Reducer
Product Series: ND110 Series
Product features: high torque, high load, ultra-precision, small size
Product Description:
Integrated design concept with high-strength bearings ensure the product itself is durable and efficient
A variety of output ideas such as shaft output, flange and gear are available.
1 arc minute ≤ backlash ≤ 3 arc minutes
Reduction ratios ranging from 3 to 100
Frame design: increases torque and optimizes power transmission
Optimised selection of oil seals: reduces friction and laminate transmission efficiency
Protection class IP65
Warranty: 2 years

Our Advantages

High torque
High load
ultra-precision
Small size

Detailed Photos

 

Product Parameters

Segment number Single segment
Ratio i 4 5 7 10
Rated output torque Nm 250 310 280 210
Emergency stop torque Nm Three times of Maximum Output Torque
Rated input speed Rpm 4000
Max input speed Rpm 8000
Ultraprecise backlash arcmin ≤1
Precision backlash arcmin ≤3
Standard backlash arcmin ≤5
Torsional rigidity Nm/arcmin 82
Max.bending moment Nm 430
Max.axial force N 2990
Service life hr 30000(15000 under continuous operation)
Efficiency % ≥97%
Weight kg 5.6
Operating Temperature ºC -10ºC~+90ºC
Lubrication   Synthetic grease
Protection class   IP64
Mounting Position   All directions
Noise level(N1=3000rpm,non-loaded) dB(A) ≤60
Rotary inertia Kg·cm² 2.87 2.71 2.62 2.57

Applicable Industries

 

                              Packaging   Machinery                              Mechanical  Hand                                                         Textile  Machinery

                   Non  Standard  automation                                          Machine  Tool                                                       Printing   Equipment

Certifications

 

 

Company Profile

 

DESBOER (HangZhou) Transmission Technology Co., Ltd. is a subsidiary of DESBOER (China), which is committed to the design, development, customized production and sales of high precision planetary reducer as 1 of the technology company. Our company has over 10 years of design, production and sales experience, the main products are the high precision planetary reducer, gear, rack, etc., with high quality, short delivery period, high cost performance and other advantages to better serve the demand of global customers. It is worth noting that we remove the intermediate link sale from the factory directly to customers, so that you can get the most ideal price and also get our best quality service simultaneously.

 

About Research

In order to strengthen the advantages of products in the international market, the head company in Kyoto, Japan to established KABUSHIKIKAISYA KYOEKI, mainly engaged in the development of DESBOER high precision planetary reducer, high precision of transmission components such as the development work, to provide the most advanced design technology and the most high-quality products for the international market.

 

 

 

Application: Motor, Machinery, Marine, Agricultural Machinery, CNC Machine
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Plantery Type
Hardness: Hardened Tooth Surface
Installation: All Directions
Step: Single-Step
Customization:
Available

|

Customized Request

helical gearbox

Installation and Alignment of Helical Gearboxes

Proper installation and alignment of a helical gearbox are essential to ensure its optimal performance and longevity. Here are the steps involved:

  1. Preparation: Gather all necessary tools, equipment, and safety gear. Ensure the work area is clean and well-lit.
  2. Mounting: Position the gearbox on the designated mounting surface and secure it using appropriate bolts. Follow the manufacturer’s guidelines for mounting torque and procedures.
  3. Shaft Alignment: Use precision tools such as dial indicators to align the input and output shafts. Achieving accurate shaft alignment minimizes stress on the gears and bearings.
  4. Bolt Tightening: Gradually and evenly tighten the mounting bolts, ensuring the gearbox remains properly aligned. Refer to torque specifications provided by the manufacturer.
  5. Lubrication: Fill the gearbox with the recommended lubricant according to the manufacturer’s specifications. Proper lubrication is crucial for reducing friction and wear.
  6. Alignment Check: After tightening the bolts, recheck the shaft alignment to ensure it hasn’t shifted during the tightening process.
  7. Run-In Period: Gradually introduce load to the gearbox to allow the gears to seat properly. Monitor the gearbox for any unusual noises, vibrations, or temperature changes during this period.
  8. Final Checks: Verify that the gearbox operates smoothly, without excessive noise or vibrations. Monitor the gearbox’s temperature during operation to ensure it remains within recommended limits.
  9. Regular Inspection: Schedule periodic inspections to check for any signs of wear, misalignment, or leakage. Address any issues promptly to prevent further damage.

It’s important to follow the manufacturer’s installation and alignment guidelines specific to the helical gearbox model you’re working with. Improper installation and alignment can lead to premature wear, reduced efficiency, and potential failure of the gearbox.

helical gearbox

Software Tools for Simulating Helical Gear Behavior

Several software tools are available for simulating the behavior of helical gears under different conditions. These tools aid engineers in designing and analyzing helical gear systems for optimal performance and reliability. Some notable software tools include:

  • KISSsoft: KISSsoft is a widely used software for the design and analysis of mechanical components, including helical gears. It offers comprehensive calculations for gear geometry, load distribution, contact stresses, and more. The software assists in optimizing gear designs and predicting their behavior under various operating conditions.
  • AGMA Rating Suite: The American Gear Manufacturers Association (AGMA) offers software tools that follow AGMA standards for gear design and analysis. These tools provide accurate calculations for gear rating, efficiency, and durability under different load scenarios.
  • ANSYS Mechanical: ANSYS Mechanical is a versatile simulation software used for finite element analysis (FEA) of mechanical systems, including helical gears. It allows engineers to perform detailed stress and deformation analysis, simulate contact patterns, and assess the effects of different loads and boundary conditions.
  • Gleason CAGE: Gleason’s Computer-Aided Gear Engineering (CAGE) software specializes in gear design and optimization. It offers advanced tools for gear tooth profile generation, simulation of meshing behavior, and optimization of gear parameters.
  • MAGMA Soft: MAGMA Soft provides casting simulation software that can be used to predict the solidification behavior and mechanical properties of casted gear components, which is essential for ensuring quality and performance.
  • Siemens NX: Siemens NX software includes gear design and analysis capabilities, allowing engineers to simulate gear behavior, calculate load distribution, and optimize gear designs within a comprehensive CAD/CAE environment.

These software tools enable engineers to model and analyze helical gears in a virtual environment, helping them make informed design decisions, optimize gear geometry, and assess gear performance under different conditions. By utilizing these tools, engineers can create reliable and efficient helical gear systems for various industrial applications.

helical gearbox

Limitations and Disadvantages of Helical Gear Systems

While helical gear systems offer numerous advantages, they also come with certain limitations and disadvantages:

  • Axial Thrust: Helical gears generate axial thrust due to the helix angle of the teeth. This thrust can cause additional load on bearings and may require additional measures to counteract.
  • Complex Manufacturing: The manufacturing process for helical gears is more complex than that of straight-toothed gears, which can lead to higher production costs.
  • Axial Length: Helical gears require more axial space compared to spur gears with the same gear ratio. This can be a limitation in applications with space constraints.
  • Sliding Contact: Helical gears have sliding contact between their teeth, which can result in higher friction and more heat generation compared to rolling contact gears.
  • Efficiency: Although helical gears are generally efficient, their efficiency can be slightly lower than that of some other gear types, especially at high speeds.
  • Complexity in Gearbox Design: The inclination of helical gear teeth introduces additional complexity in gearbox design and alignment.
  • Reverse Thrust: In some cases, reverse thrust can occur when helical gears are subjected to high axial loads, leading to undesirable effects.

It’s important to consider these limitations and disadvantages when selecting gear systems for specific applications. Despite these challenges, helical gears remain a popular choice in various industries due to their benefits and overall performance characteristics.

China supplier Desboer ND110 Series Ratio16-100 Helical Precision Speed Reducer Planetary Gearbox for Servo Stepper Motor Tool Industrial Automation Robotics Laser Cutting Mac   gearbox assembly	China supplier Desboer ND110 Series Ratio16-100 Helical Precision Speed Reducer Planetary Gearbox for Servo Stepper Motor Tool Industrial Automation Robotics Laser Cutting Mac   gearbox assembly
editor by CX 2023-11-02

China Hot selling High Input Speed Stainless Steel Heavy Duty Helical Gearbox Planetary Gear Reducers for Servomotor supplier

Product Description

Product Description

high input speed stainless steel heavy duty helical gearbox Planetary gear reducers for servomotor

HangZhou Fubao Electromechanical Technology Co., Ltd. helical gearbox Planetary gear reducers is a new generation of practical products independently developed by our company:

Low noise: less than 65db.

Low back clearance: up to 3 arc minutes in a CZPT and 5 arc minutes in a double stage.

High torque: higher than the standard planetary reducer torque.

High stability: high strength alloy steel, the whole gear after hardening treatment, not only the surface hard substitution.

High deceleration ratio: Modular design, planetary gearbox can be interlinked.

helical gearbox Planetary gear reducers characteristic:

1.Planetary reducer manufacturer-Fubao Electromechanical Technology adopts an integrated planetary carrier and output shaft, which can provide better torsional rigidity. After precision machining, the gear set is not easy to eccentric, which can reduce interference, reduce wear and noise, and at the same time use a large The bearings are arranged with a wide span to distribute the load of the bearings, and once again strengthen the torque rigidity and radial load capacity of the helical gearbox Planetary gear reducers. The output cover is made of aluminum alloy, which provides better heat dissipation capability for the product, so that the reducer produced by Fubao Electromechanical Technology can play an excellent role in the field of mechanical tools.

2.The planetary gear set is specially made of alloy steel. First, it undergoes quenching and tempering heat treatment to make the material hardness reach HRC30 degrees, and then undergoes nitriding surface treatment to HV860, so that the product has the characteristics of high surface hardness and high toughness in the center, and achieves the best product strength and service life. optimization.

3.The input shaft and the motor output shaft are connected by a bolted structure, with a round shaft seal design, and through dynamic balance analysis, it can ensure that there is no eccentric load at high speeds. After reducing unnecessary radial force, it can effectively Reduce the load on the motor side.

4.The material of the input cover/motor connection seat is made of aluminum alloy, which can provide better heat dissipation effect, and then provide good concentricity and verticality through professional lathe processing, so that the product can be stably combined with various motors, reducing the damage caused by insufficient precision. Unnecessary axial radial force makes the product have a longer life cycle.

Compared with other reduction machines, helical gearbox Planetary gear reducers machines have high rigidity, high precision (single stage can be achieved within 1 point), high transmission efficiency (single stage in 97-98%), high torque/volume ratio, lifetime maintenance free and other characteristics.

Because of these characteristics,helical gearbox Planetary gear reducers is mostly installed on the stepper motor and servo motor, used to reduce speed, increase torque, matching inertia.

Product Parameters

 

WVB/WVBL series parameters Model number WVB042/WVBL50 WVB60/WVBL70 WVB/WVBL90 WVB/WVBL120 WVB142/WVBL155 WVB180/WVBL205 WVB220/WVBL235
Rated output torque 13-17Nm 32-48Nm 80-125Nm 165-265Nm 280-530Nm 480-960Nm 900-1360Nm
Reduction ratio L1: 3, 4, 5, 7, 10 L2: 12, 15, 20, 25, 30, 35, 40, 50, 70, 100
Planetary gear backlash L1: P1≤3 P2≤5  L2: P1≤5 P2≤7

 

Detailed Photos

Product Details

Other products

 

Company Profile

HangZhou Fubao Electromechanical Technology Co., Ltd. was established in 2008, the company has a complete precision reducer design, production capacity. Set R & D, manufacturing, assembly and sales, more in the field of gear manufacturing has more than 10 years of background, in the manufacturing equipment is equipped with Switzerland Riesenhahl gear grinding machine, domestic Qinchuan gear grinding machine, hamai gear hobbing machine and domestic Xihu (West Lake) Dis. gear hobbing machine, Japan Yasaki TLGmazak CNC lathe, CNC milling machine and other fully CNC equipment, In addition, it is equipped with other advanced measuring equipment such as Japanese TTI gear detector, 3 coordinate measurement, reducer backlash measurement instrument and so on. In a strong manufacturing capacity at the same time, can be stable, continuous manufacturing of high-quality precision reducer products.

The precision reducer produced by our company has the characteristics of high structural rigidity, small back backlash, precise transmission and so on. It is widely used in various industries. Companies adhering to the concept of let customers participate in manufacturing, and strive to provide customers with more personalized services. In the field of precision transmission has a unique achievements. It is our CZPT pursuit to make far-reaching contributions.

 

Factory Display

FAQ

Q: Speed reducer grease replacement time
A: When sealing appropriate amount of grease and running reducer, the standard replacement time is 20000 hours according to the aging condition of the grease. In addition, when the grease is stained or used in the surrounding temperature condition (above 40ºC), please check the aging and fouling of the grease, and specify the replacement time.

Q: Delivery time
A: Fubao has 2000+ production base, daily output of 1000+ units, standard models within 7 days of delivery.

Q: Reducer selection
A: Fubao provides professional product selection guidance, with higher product matching degree, higher cost performance and higher utilization rate.

Q: Application range of reducer
A: Fubao has a professional research and development team, complete category design, can match any stepping motor, servo motor, more accurate matching.

Application: Motor, Machinery, Agricultural Machinery, Palletizing Robot
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

helical gearbox

Advancements in Helical Gearbox Technology

Advancements in helical gearbox technology have led to improved performance, efficiency, and versatility. Here are some notable advancements:

  • Material Innovations: The use of advanced materials, such as high-strength alloys and composites, has enhanced the durability and load-carrying capacity of helical gears. These materials also contribute to reduced weight and improved efficiency.
  • Precision Manufacturing: Modern manufacturing techniques, including CNC machining and gear grinding, have enabled the production of helical gears with higher accuracy and tighter tolerances. This results in smoother operation and reduced noise levels.
  • Gear Tooth Profile Optimization: Advanced computer simulations and modeling techniques allow for the optimization of gear tooth profiles. This results in better load distribution, reduced stress concentration, and improved overall gearbox efficiency.
  • Lubrication and Cooling: Improved lubrication systems and cooling mechanisms help maintain optimal operating temperatures and extend the lifespan of helical gearboxes. This is particularly important for high-demand applications.
  • Noise and Vibration Reduction: Innovative designs and precision manufacturing techniques have led to helical gears with reduced noise and vibration levels. This advancement is crucial for industries where noise reduction is a priority.
  • Compact Design: Advancements in gear design and manufacturing have allowed for more compact and lightweight helical gearbox configurations, making them suitable for space-constrained environments.
  • Integration with Electronics: Some modern helical gearboxes are designed for seamless integration with electronic control systems. This enables better monitoring, control, and optimization of gearbox performance.
  • Customization: Advancements in manufacturing and design tools allow for greater customization of helical gearboxes to meet specific application requirements. This includes adapting gear ratios, sizes, and configurations.

In summary, advancements in helical gearbox technology have led to enhanced performance, durability, efficiency, and customization options. These innovations continue to make helical gearboxes a versatile and reliable choice for a wide range of industrial applications.

helical gearbox

Impact of Thermal Expansion on Helical Gearbox Performance

Thermal expansion can significantly affect the performance of helical gearboxes due to changes in dimensions and clearances caused by temperature variations. Here’s how it impacts:

1. Misalignment: Temperature changes can lead to differential expansion of gearbox components. This can result in misalignment of gears, shafts, and bearings, leading to increased friction, noise, and reduced efficiency.

2. Lubrication: Thermal expansion can alter the clearances within the gearbox, affecting the distribution and viscosity of the lubricating oil. Inadequate lubrication due to temperature-induced changes can result in increased wear and premature failure.

3. Gear Tooth Engagement: Temperature fluctuations can cause gear teeth to expand or contract, affecting the meshing engagement and load distribution. Inconsistent gear tooth contact can lead to uneven wear and reduced gear life.

4. Bearing Performance: Bearings in helical gearboxes are sensitive to temperature changes. Excessive heat can lead to reduced bearing life, increased friction, and potential seizure, affecting overall gearbox performance.

5. Noise and Vibration: Thermal expansion can lead to changes in gear and component clearances, resulting in altered vibration patterns and increased noise levels. This can impact the comfort of the system and indicate potential issues.

6. Material Fatigue: Repeated cycles of thermal expansion and contraction can lead to material fatigue and stress accumulation, reducing the overall lifespan of gearbox components.

Managing Thermal Effects: Manufacturers design helical gearboxes with considerations for thermal expansion, using materials with low coefficients of thermal expansion and incorporating features like expansion joints or thermal isolators. Proper lubrication, monitoring temperature, and maintaining consistent operating conditions are also crucial in mitigating thermal expansion effects.

Understanding and managing the impact of thermal expansion is essential to maintain the performance, efficiency, and durability of helical gearboxes.

helical gearbox

Noise and Vibration Levels in Helical Gearboxes

Helical gearboxes are known for their relatively low noise and vibration levels compared to some other types of gears. However, there are still certain factors that can influence the noise and vibration levels in helical gear systems:

  • Helix Angle: The helix angle of helical gears helps to distribute the load over multiple teeth, reducing impact forces and resulting in smoother meshing. This contributes to lower noise and vibration levels.
  • Precision Manufacturing: High-precision manufacturing processes can ensure better gear tooth geometry and minimize irregularities that could lead to noise and vibration.
  • Lubrication: Proper lubrication is crucial for reducing friction and damping vibrations between gear teeth. Insufficient or improper lubrication can lead to increased noise levels.
  • Alignment: Proper alignment of gears is essential to minimize misalignment-induced noise and vibration. Misalignment can cause uneven tooth contact and lead to increased noise and vibration.
  • Load Distribution: Helical gears distribute loads over multiple teeth, which helps in reducing localized stresses and vibrations that could cause noise.
  • Material Quality: High-quality materials with good damping properties can help absorb vibrations and reduce noise transmission.
  • Operating Conditions: Factors such as operating speed, load, temperature, and gear backlash can influence noise and vibration levels.

Overall, helical gearboxes are designed to provide smoother and quieter operation compared to other gear types. However, the noise and vibration levels can still vary based on design, manufacturing quality, and operational factors. Engineers can optimize gear design and operating conditions to achieve the desired noise and vibration characteristics for specific applications.

China Hot selling High Input Speed Stainless Steel Heavy Duty Helical Gearbox Planetary Gear Reducers for Servomotor   supplier China Hot selling High Input Speed Stainless Steel Heavy Duty Helical Gearbox Planetary Gear Reducers for Servomotor   supplier
editor by CX 2023-10-26

China Standard Speed Reducer Gear Motors Geared Motor Gearbox Gear Unit with Input Flange Roller Press Planetary Worm Helicalgear Reducer Gearbox China Industrial Manufacturer with high quality

Product Description

Speed Reducer Gear Motors Geared Motor Gearbox Gear Unit with Input Flange roller press planetary worm helicalgear reducer gearbox China Industrial Manufacturer

Application of Motor Gearbox

Motor gearboxes are used in a wide variety of applications, including:

  • Machine tools. Motor gearboxes are used in machine tools to control the speed of the cutting tool. This allows for the precise machining of materials.
  • Conveyors. Motor gearboxes are used in conveyors to control the speed of the conveyor belt. This allows for the efficient and safe transportation of materials.
  • Wind turbines. Motor gearboxes are used in wind turbines to control the speed of the turbine blades. This allows for the efficient generation of electricity.
  • Elevators. Motor gearboxes are used in elevators to control the speed of the elevator car. This allows for the safe and efficient transportation of people and goods.
  • Other applications. Motor gearboxes are also used in a variety of other applications, such as:
    • Robotics
    • Pumps
    • Fans
    • Compressors

Motor gearboxes are a critical component in many machines and systems. They allow for the efficient and reliable transmission of power, which is essential for many applications.

Here are some of the advantages of using motor gearboxes:

  • Efficiency. Motor gearboxes are very efficient at transmitting power. This is because they have a smooth, direct connection between the input and output shafts.
  • Versatility. Motor gearboxes are available in a variety of sizes and styles, which makes them adaptable to a wide range of machines and systems.
  • Durability. Motor gearboxes are made of strong materials, such as steel or cast iron, which makes them durable and long-lasting.

Overall, motor gearboxes are a versatile and beneficial component that can be used in a wide variety of applications. They can help to improve efficiency, versatility, and durability.

Here are some additional details about the applications of motor gearboxes:

  • Machine tools. In machine tools, motor gearboxes are used to control the speed of the cutting tool. This allows for the precise machining of materials. For example, in a milling machine, the motor gearbox is used to control the speed of the milling cutter. This allows the operator to control the depth and width of the cut, as well as the finish of the surface.
  • Conveyors. In conveyors, motor gearboxes are used to control the speed of the conveyor belt. This allows for the efficient and safe transportation of materials. For example, in a food processing plant, a conveyor belt is used to transport food products from 1 station to another. The motor gearbox is used to control the speed of the conveyor belt so that the food products are not damaged.
  • Wind turbines. In wind turbines, motor gearboxes are used to control the speed of the turbine blades. This allows for the efficient generation of electricity. For example, in a wind turbine with a 100-meter rotor diameter, the turbine blades can rotate at speeds of up to 200 kilometers per hour. The motor gearbox is used to reduce the speed of the turbine blades to a safe and efficient level for generating electricity.
  • Elevators. In elevators, motor gearboxes are used to control the speed of the elevator car. This allows for the safe and efficient transportation of people and goods. For example, in a high-rise building, the elevator car may travel at speeds of up to 10 CZPT per second. The motor gearbox is used to reduce the speed of the elevator car to a safe and comfortable level for passengers.

These are just a few examples of the many applications of motor gearboxes. Motor gearboxes are a critical component in many machines and systems, and they play an important role in the efficient and reliable transmission of power.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Advancements in Helical Gearbox Technology

Advancements in helical gearbox technology have led to improved performance, efficiency, and versatility. Here are some notable advancements:

  • Material Innovations: The use of advanced materials, such as high-strength alloys and composites, has enhanced the durability and load-carrying capacity of helical gears. These materials also contribute to reduced weight and improved efficiency.
  • Precision Manufacturing: Modern manufacturing techniques, including CNC machining and gear grinding, have enabled the production of helical gears with higher accuracy and tighter tolerances. This results in smoother operation and reduced noise levels.
  • Gear Tooth Profile Optimization: Advanced computer simulations and modeling techniques allow for the optimization of gear tooth profiles. This results in better load distribution, reduced stress concentration, and improved overall gearbox efficiency.
  • Lubrication and Cooling: Improved lubrication systems and cooling mechanisms help maintain optimal operating temperatures and extend the lifespan of helical gearboxes. This is particularly important for high-demand applications.
  • Noise and Vibration Reduction: Innovative designs and precision manufacturing techniques have led to helical gears with reduced noise and vibration levels. This advancement is crucial for industries where noise reduction is a priority.
  • Compact Design: Advancements in gear design and manufacturing have allowed for more compact and lightweight helical gearbox configurations, making them suitable for space-constrained environments.
  • Integration with Electronics: Some modern helical gearboxes are designed for seamless integration with electronic control systems. This enables better monitoring, control, and optimization of gearbox performance.
  • Customization: Advancements in manufacturing and design tools allow for greater customization of helical gearboxes to meet specific application requirements. This includes adapting gear ratios, sizes, and configurations.

In summary, advancements in helical gearbox technology have led to enhanced performance, durability, efficiency, and customization options. These innovations continue to make helical gearboxes a versatile and reliable choice for a wide range of industrial applications.

helical gearbox

Handling Shock Loads and Sudden Changes in Torque in Helical Gearboxes

Helical gearboxes are designed to handle a range of operational conditions, including shock loads and sudden changes in torque. The helical design of the gears, which have slanted teeth that engage gradually, helps to distribute forces more evenly across the teeth compared to straight-cut gears. This design characteristic contributes to the gearbox’s ability to withstand sudden changes in torque and shock loads.

The gradual engagement of the helical teeth results in smoother and quieter operation, reducing the impact of abrupt torque changes. The slanted teeth also allow for more gradual transmission of force, which helps in dampening vibrations and minimizing stress concentrations that can occur in high-impact situations.

However, while helical gears are better suited for shock loads compared to straight-cut gears, it’s important to note that extreme shock loads or sudden torque changes can still impact the gearbox’s components over time. Manufacturers often take factors such as application requirements, load profiles, and anticipated shock loads into consideration when designing helical gearboxes to ensure reliable and durable performance.

Additionally, using appropriate lubrication and maintenance practices can further enhance the gearbox’s ability to handle shock loads and sudden torque changes. Regular inspection and timely maintenance help identify and address potential issues before they lead to component failure.

helical gearbox

Limitations and Disadvantages of Helical Gear Systems

While helical gear systems offer numerous advantages, they also come with certain limitations and disadvantages:

  • Axial Thrust: Helical gears generate axial thrust due to the helix angle of the teeth. This thrust can cause additional load on bearings and may require additional measures to counteract.
  • Complex Manufacturing: The manufacturing process for helical gears is more complex than that of straight-toothed gears, which can lead to higher production costs.
  • Axial Length: Helical gears require more axial space compared to spur gears with the same gear ratio. This can be a limitation in applications with space constraints.
  • Sliding Contact: Helical gears have sliding contact between their teeth, which can result in higher friction and more heat generation compared to rolling contact gears.
  • Efficiency: Although helical gears are generally efficient, their efficiency can be slightly lower than that of some other gear types, especially at high speeds.
  • Complexity in Gearbox Design: The inclination of helical gear teeth introduces additional complexity in gearbox design and alignment.
  • Reverse Thrust: In some cases, reverse thrust can occur when helical gears are subjected to high axial loads, leading to undesirable effects.

It’s important to consider these limitations and disadvantages when selecting gear systems for specific applications. Despite these challenges, helical gears remain a popular choice in various industries due to their benefits and overall performance characteristics.

China Standard Speed Reducer Gear Motors Geared Motor Gearbox Gear Unit with Input Flange Roller Press Planetary Worm Helicalgear Reducer Gearbox China Industrial Manufacturer   with high quality China Standard Speed Reducer Gear Motors Geared Motor Gearbox Gear Unit with Input Flange Roller Press Planetary Worm Helicalgear Reducer Gearbox China Industrial Manufacturer   with high quality
editor by CX 2023-10-11