Tag Archives: speed reducer motor

China manufacturer Trc Src Helical Gear Motor Reducer Gearbox with Stable Speed Transmission gearbox engine

Product Description

 Technical features:

The high degree of modularity is a design feature of SRC helical gearboxes range. It can be connected respectively with motors such as normal motor, brake motor, explosion-proof motor, frequency conversion motor, 

servo motor, IEC motor and so on. This kind of product is widely used in drive fields such as textile, foodstuff, ceramics packing, logistics, plastics and so on. It is possible to set up the version required using flanges or feet.

 

 Characteristics:

SRC series helical gear units has more than 4 types. Power 0.12-4kw; Ratio 3.66-54; Torque max 120-500Nm. It can be connected (foot or flange) discretionary and use multi-mounting positions according to customers requirements.

 

1.Ground-hardened helical gears;

2.Modularity,can be combined in many forms;

3.Aluminium casing, light weight;

4.Gears in carbonize hard, durable;

5.Universal mounting;

6.Refined design,space effective and low noise

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: External Gear
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

helical gearbox

Installation and Alignment of Helical Gearboxes

Proper installation and alignment of a helical gearbox are essential to ensure its optimal performance and longevity. Here are the steps involved:

  1. Preparation: Gather all necessary tools, equipment, and safety gear. Ensure the work area is clean and well-lit.
  2. Mounting: Position the gearbox on the designated mounting surface and secure it using appropriate bolts. Follow the manufacturer’s guidelines for mounting torque and procedures.
  3. Shaft Alignment: Use precision tools such as dial indicators to align the input and output shafts. Achieving accurate shaft alignment minimizes stress on the gears and bearings.
  4. Bolt Tightening: Gradually and evenly tighten the mounting bolts, ensuring the gearbox remains properly aligned. Refer to torque specifications provided by the manufacturer.
  5. Lubrication: Fill the gearbox with the recommended lubricant according to the manufacturer’s specifications. Proper lubrication is crucial for reducing friction and wear.
  6. Alignment Check: After tightening the bolts, recheck the shaft alignment to ensure it hasn’t shifted during the tightening process.
  7. Run-In Period: Gradually introduce load to the gearbox to allow the gears to seat properly. Monitor the gearbox for any unusual noises, vibrations, or temperature changes during this period.
  8. Final Checks: Verify that the gearbox operates smoothly, without excessive noise or vibrations. Monitor the gearbox’s temperature during operation to ensure it remains within recommended limits.
  9. Regular Inspection: Schedule periodic inspections to check for any signs of wear, misalignment, or leakage. Address any issues promptly to prevent further damage.

It’s important to follow the manufacturer’s installation and alignment guidelines specific to the helical gearbox model you’re working with. Improper installation and alignment can lead to premature wear, reduced efficiency, and potential failure of the gearbox.

helical gearbox

Can Helical Gearboxes Be Retrofitted into Existing Machinery Designs?

Yes, helical gearboxes can often be retrofitted into existing machinery designs, providing an opportunity to upgrade the performance, efficiency, and reliability of older equipment. Here are the key points to consider when retrofitting helical gearboxes:

1. Compatibility: Before proceeding with a retrofit, it’s essential to ensure that the new helical gearbox is compatible with the existing machinery in terms of size, mounting, and shaft connections. Proper measurements and analysis are necessary to avoid any misalignment or fitment issues.

2. Space Considerations: Helical gearboxes may have a different physical profile compared to the original gearboxes. Engineers need to assess the available space in the machinery and confirm that the new gearbox will fit without major modifications.

3. Shaft Alignment: Proper shaft alignment is crucial to ensure smooth and efficient operation. During the retrofit, it’s important to align the new helical gearbox with other components in the system to prevent premature wear, noise, and vibration.

4. Power and Torque Ratings: The power and torque ratings of the helical gearbox should match or exceed the requirements of the machinery. This ensures that the new gearbox can handle the loads and stresses that the machinery may encounter.

5. Performance Improvements: Retrofitting with helical gearboxes can lead to improved efficiency, reduced noise, and smoother operation. These benefits can positively impact the overall performance and lifespan of the machinery.

6. Engineering Expertise: Retrofitting involves careful planning, engineering analysis, and implementation. Working with experienced engineers or gearbox specialists is advisable to ensure a successful retrofit without compromising the integrity of the machinery.

7. Cost-Benefit Analysis: Assessing the costs of the retrofit, including the cost of the new gearbox, installation, downtime, and potential modifications, is essential. Comparing these costs to the anticipated benefits of improved performance and efficiency will help make an informed decision.

8. Maintenance Considerations: Retrofitting may also impact maintenance practices. It’s important to understand any changes in lubrication requirements, inspection intervals, and servicing needs that come with the new gearbox.

Conclusion: Retrofitting helical gearboxes into existing machinery designs can be a cost-effective way to enhance the performance and extend the lifespan of equipment. However, careful planning, engineering analysis, and professional expertise are crucial to ensure a successful retrofit that delivers the desired improvements without causing unforeseen issues.

helical gearbox

Limitations and Disadvantages of Helical Gear Systems

While helical gear systems offer numerous advantages, they also come with certain limitations and disadvantages:

  • Axial Thrust: Helical gears generate axial thrust due to the helix angle of the teeth. This thrust can cause additional load on bearings and may require additional measures to counteract.
  • Complex Manufacturing: The manufacturing process for helical gears is more complex than that of straight-toothed gears, which can lead to higher production costs.
  • Axial Length: Helical gears require more axial space compared to spur gears with the same gear ratio. This can be a limitation in applications with space constraints.
  • Sliding Contact: Helical gears have sliding contact between their teeth, which can result in higher friction and more heat generation compared to rolling contact gears.
  • Efficiency: Although helical gears are generally efficient, their efficiency can be slightly lower than that of some other gear types, especially at high speeds.
  • Complexity in Gearbox Design: The inclination of helical gear teeth introduces additional complexity in gearbox design and alignment.
  • Reverse Thrust: In some cases, reverse thrust can occur when helical gears are subjected to high axial loads, leading to undesirable effects.

It’s important to consider these limitations and disadvantages when selecting gear systems for specific applications. Despite these challenges, helical gears remain a popular choice in various industries due to their benefits and overall performance characteristics.

China manufacturer Trc Src Helical Gear Motor Reducer Gearbox with Stable Speed Transmission   gearbox engineChina manufacturer Trc Src Helical Gear Motor Reducer Gearbox with Stable Speed Transmission   gearbox engine
editor by CX 2024-05-15

China supplier Shaft Helical Gearbox Geared Motor Speed Reducer Stashers Gearbox gearbox adjustment

Product Description

Product Description

Introducing FR,FF, FK, and FS Series Gear Reducers and Gearmotors

Our FR, FF, FK, and FS series gear motors are designed to meet a vast spectrum of industrial requirements. These series are distinguished by their remarkable compactness, minimal noise output, high load-bearing capacity, low energy consumption, superior torque transmission, optimal efficiency, minimal temperature rise, and extended lifespan.

Customized Solutions for Diverse Needs
Embracing a philosophy of modular design and optimization, we are dedicated to fulfilling diverse customer needs across various applications. Multi-stage gear motors with additional helical gear input stages are supplied to achieve particularly low output speeds.

Advanced Material and Manufacturing Techniques
Gears and pinions are crafted from premium alloy steel, treated with carburization and quenching for enhanced durability. The high-precision gear grinding process, complemented by meticulous tooth profile modifications, guarantees a smooth transmission.

Versatile Installation and Output Options
Our gear reducers are designed for various mounting configurations including foot, flange, and torque arm installations. Output shaft options are versatile, offering both CZPT and hollow shafts that can be adapted using either spline or locking disc connections for a secure and efficient power transfer.

Comprehensive Input Compatibility
Besides the integral connection with motor directly, CZPT also provide AM motor flanges compliant with IEC, NEMA C faces compliant with Nema system, and AD CZPT shaft input.

 

Company Profile

 

l  The largest manufacturer and exporter of worm gear reducers in Asia.

 

l  Established in 1976, we transformed from a county owned factory to private 1 in 1996. HangZhou SINO-DEUTSCH POWER TRANSMISSION EQUIPMENT CO.,LTD is our new name since 2001.

 

l  We are the first manufacturer of reducers and gearboxes in China who was given export license since year 1993.

 

l  “Fixedstar” brand gearboxes and reducers are the first owner of CHINA TOP BRAND and Most Famous Trade Mark for reducers.

First to achieve ISO9001 and CE Certificate among all manufacturers of gearboxes in China.

 

Formerly known as HangZhou Reducer Factory, CZPT Group was founded in 1976.

Presently, our commitment extends beyond manufacturing as we engage in diligent research and trading endeavors. Our primary focus centers on power transmission products, constituting the core of our business operations.

Having invested a total of 2 billion Yuan in land spHangZhou an impressive 200,000 square meters, our workforce of 1000 dedicated employees now produce over 3,500 distinct types of gearboxes each day, serving the global market.

With unwavering commitment to research and development over a span of 45 years, CZPT takes great pride in holding the esteemed distinction of being the largest manufacturer of small and medium-sized speed reducers in Asia.

Our main products range from Worm Gear Reducers, Helical Gear Reducers, Helical Bevel Reducers, Shaft Mounted Reducers to Slewing drives and more.

 

We warmly welcome customers from other parts of the world to visit us. Seeing is believing. We are very confident that after visiting our facility, you will have confidence on our products. We have the latest automatic equipments and experienced workers to ensure the stable quality and large output. We have the most sophisticated technical and engineering team to support most demanding requirement on standard and OEM products.

 

Looking CZPT to meeting you in HangZhou, China.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing
Layout: Parallel
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step
Customization:
Available

|

Customized Request

helical gearbox

Comparison of Helical Gearboxes and Bevel Gearboxes

Helical gearboxes and bevel gearboxes are both widely used for power transmission in various industrial applications. Here’s a comparison of their performance:

  • Gear Meshing: Helical gearboxes use helical gears with inclined teeth that gradually engage, resulting in smoother and quieter operation compared to the more abrupt engagement of straight-cut bevel gears.
  • Efficiency: Helical gearboxes generally offer higher efficiency due to their helical gear design, which distributes loads evenly across the teeth. Bevel gearboxes can have slightly lower efficiency due to the sliding action of gear teeth during engagement.
  • Load Capacity: Helical gearboxes can handle higher loads and torque due to the larger contact area of the gear teeth. Bevel gearboxes are suitable for moderate loads and applications where the direction of power transmission needs to be changed.
  • Space Efficiency: Bevel gearboxes are often more compact and suitable for applications where space is limited and a change in direction is required. Helical gearboxes may require more space due to the parallel shaft arrangement.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to straight-cut bevel gearboxes. Bevel gearboxes can be noisier, especially at higher speeds.
  • Application: Helical gearboxes are commonly used in applications requiring smooth and efficient power transmission, such as conveyors, pumps, and mixers. Bevel gearboxes are preferred for applications where changes in direction are necessary, such as in automotive differentials and printing presses.

Ultimately, the choice between helical and bevel gearboxes depends on the specific requirements of the application, including load capacity, space constraints, efficiency goals, and the need for directional changes in power transmission.

helical gearbox

Safety Precautions for Operating Machinery with Helical Gear Systems

When operating machinery equipped with helical gear systems, it’s crucial to prioritize safety to prevent accidents and ensure the well-being of operators and equipment. Here are the key safety precautions to consider:

  • Training and Familiarity: Operators should receive proper training on the equipment’s operation, including the helical gear system. They should be familiar with the controls, emergency procedures, and potential hazards.
  • Protective Gear: Operators should wear appropriate personal protective equipment (PPE), such as gloves, safety glasses, helmets, and ear protection, depending on the application’s requirements.
  • Lockout/Tagout: Before performing maintenance or repairs, follow lockout/tagout procedures to isolate the machinery from its power source and prevent accidental startup.
  • Regular Inspections: Conduct routine inspections of the helical gear system and other machinery components to identify signs of wear, damage, or malfunction. Address any issues promptly to avoid unsafe conditions.
  • Proper Lubrication: Ensure the helical gear system is adequately lubricated according to manufacturer recommendations. Proper lubrication reduces friction, wear, and heat buildup, enhancing both performance and safety.
  • Emergency Stop: Machinery should be equipped with clearly marked emergency stop buttons or switches that operators can use to halt operations immediately in case of an emergency.
  • Cleaning and Housekeeping: Maintain a clean work environment by removing debris, oil spills, and other potential hazards. Good housekeeping minimizes slip and trip hazards and promotes safe operation.
  • Load Capacity: Adhere to the recommended load capacities specified by the manufacturer for both the helical gear system and the machinery as a whole. Overloading can lead to accelerated wear and potential failures.
  • Avoid Loose Clothing: Operators should avoid wearing loose clothing, jewelry, or other items that could become entangled in the machinery, leading to accidents.
  • Safe Working Distances: Establish safe working distances from moving parts of the machinery, including the helical gear system, to prevent accidental contact and ensure operator safety.
  • Regular Maintenance: Follow the manufacturer’s maintenance schedule and guidelines for the helical gear system. Regular maintenance reduces the risk of unexpected failures and promotes safe and reliable operation.

Prioritizing safety when operating machinery with helical gear systems is essential to prevent accidents, protect operators, and maintain efficient operations. Following these precautions and promoting a safety-conscious culture can significantly contribute to a safe working environment.

helical gearbox

Differences Between Helical Gearboxes and Spur Gearboxes

Helical gearboxes and spur gearboxes are two common types of gearboxes used in various applications. Here are the key differences between them:

  • Tooth Design: The main difference between helical and spur gearboxes lies in their tooth design. Helical gearboxes feature helical teeth that are cut at an angle to the gear axis, while spur gearboxes have straight-cut teeth that run parallel to the gear axis.
  • Engagement: Helical gearboxes offer a gradual and smooth engagement of teeth due to their helical tooth design. This results in reduced noise and vibration compared to spur gearboxes, which can have more abrupt and noisy tooth engagement.
  • Load Distribution: Helical gearboxes have a higher contact ratio between teeth at any given time, which leads to better load distribution across the gear teeth. Spur gearboxes, on the other hand, have fewer teeth in contact at a time, potentially leading to higher stress on individual teeth.
  • Efficiency: Helical gearboxes tend to be more efficient than spur gearboxes due to the helical tooth design, which reduces friction and energy losses during gear meshing. The gradual engagement of helical teeth contributes to this higher efficiency.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to spur gearboxes. The helical tooth design and smooth engagement help in reducing the impact of gear meshing on overall noise levels.
  • Applications: Helical gearboxes are commonly used in applications that require higher torque and smoother operation, such as heavy machinery, automotive transmissions, and industrial equipment. Spur gearboxes are suitable for applications with moderate loads and where noise considerations are not critical.

Overall, helical gearboxes offer advantages in terms of efficiency, load distribution, and noise reduction compared to spur gearboxes. However, the choice between the two depends on specific application requirements and factors such as torque, speed, space constraints, and noise considerations.

China supplier Shaft Helical Gearbox Geared Motor Speed Reducer Stashers Gearbox   gearbox adjustment	China supplier Shaft Helical Gearbox Geared Motor Speed Reducer Stashers Gearbox   gearbox adjustment
editor by CX 2024-05-09

China OEM High Torque 10kw AC Gear Motor Inline Helical Gear Box Speed Reducer synchromesh gearbox

Product Description

R Series Inline Helical 2 double stage Speed Reducer output 30 rpm Gearbox

Product Description

>Click Here To Cotact<

 

Product Advantages

Company Information

Certificate

Main Products

Global Exhibition

Brand

WUMA

 

 

 

Housing

Three type

 

 

 

Nameplate

WUMA or Customize

 

 

 

Reducer

worm gearbox,helical gearbox, hypoid gearbox,planetary gearbox and variator etc.

 

 

 

FAQ

1 . How to choose a gearbox which meets our requirement?
You can refer to our catalogue to choose the gearbox or we can help to choose when you provide
the technical information of required output torque, output speed and motor parameter etc.

2. What information shall we give before placing a purchase order?
a) Type of the gearbox, ratio, input and output type, input flange, mounting position, and motor informationetc.
b) Housing color.
c) Purchase quantity.
d) Other special requirements.

3. What industries are your gearboxes being used?
Our gearboxes are widely used in the areas of textile, food processing, beverage, chemical industry,
escalator,automatic storage equipment, metallurgy, tabacco, environmental protection, logistics and etc.

4. Doyou sell motors?
We have stable motor suppliers who have been coperating with us for a long-time. They can provide motors
with high quality.

>Return Home<

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

helical gearbox

Types of Helical Gear Arrangements

Yes, there are different types of helical gear arrangements available to suit various applications and requirements. Some of the common helical gear arrangements include:

Parallel Shaft Arrangement: In this arrangement, the axes of the driving and driven shafts are parallel to each other. It is the most straightforward configuration and is often used in applications where space is not a constraint, and the gearboxes can be placed side by side.

Right-Angle Shaft Arrangement: In a right-angle arrangement, the driving and driven shafts are positioned at a 90-degree angle to each other. This arrangement is space-saving and is commonly used in applications where the layout requires a change in direction of the power transmission.

Double Helical Gear Arrangement (Herringbone Gears): Double helical gears consist of two sets of helical teeth facing each other. This arrangement helps to cancel out axial forces and reduces the net thrust load on bearings. It is often used in heavy-duty applications to minimize wear and vibration.

Crossed Helical Gear Arrangement (Screw Gears): In this configuration, the axes of the driving and driven shafts are neither parallel nor intersecting. It is suitable for applications requiring non-parallel and non-intersecting shafts.

The choice of helical gear arrangement depends on factors such as available space, power transmission requirements, and the desired layout of the machinery or equipment. Each arrangement has its advantages and disadvantages, and selecting the appropriate one is crucial for achieving optimal performance and efficiency.

helical gearbox

Software Tools for Simulating Helical Gear Behavior

Several software tools are available for simulating the behavior of helical gears under different conditions. These tools aid engineers in designing and analyzing helical gear systems for optimal performance and reliability. Some notable software tools include:

  • KISSsoft: KISSsoft is a widely used software for the design and analysis of mechanical components, including helical gears. It offers comprehensive calculations for gear geometry, load distribution, contact stresses, and more. The software assists in optimizing gear designs and predicting their behavior under various operating conditions.
  • AGMA Rating Suite: The American Gear Manufacturers Association (AGMA) offers software tools that follow AGMA standards for gear design and analysis. These tools provide accurate calculations for gear rating, efficiency, and durability under different load scenarios.
  • ANSYS Mechanical: ANSYS Mechanical is a versatile simulation software used for finite element analysis (FEA) of mechanical systems, including helical gears. It allows engineers to perform detailed stress and deformation analysis, simulate contact patterns, and assess the effects of different loads and boundary conditions.
  • Gleason CAGE: Gleason’s Computer-Aided Gear Engineering (CAGE) software specializes in gear design and optimization. It offers advanced tools for gear tooth profile generation, simulation of meshing behavior, and optimization of gear parameters.
  • MAGMA Soft: MAGMA Soft provides casting simulation software that can be used to predict the solidification behavior and mechanical properties of casted gear components, which is essential for ensuring quality and performance.
  • Siemens NX: Siemens NX software includes gear design and analysis capabilities, allowing engineers to simulate gear behavior, calculate load distribution, and optimize gear designs within a comprehensive CAD/CAE environment.

These software tools enable engineers to model and analyze helical gears in a virtual environment, helping them make informed design decisions, optimize gear geometry, and assess gear performance under different conditions. By utilizing these tools, engineers can create reliable and efficient helical gear systems for various industrial applications.

helical gearbox

Lubrication Requirements for Maintaining Helical Gearboxes

Lubrication is essential for the proper functioning and longevity of helical gearboxes. The lubrication requirements include:

  • Viscosity: Selecting a lubricant with the appropriate viscosity is crucial. The viscosity should provide sufficient lubrication and ensure a protective film between gear teeth under varying operating conditions.
  • Extreme Pressure (EP) Properties: Helical gears often experience high contact pressures. Lubricants with EP additives form a protective barrier that prevents metal-to-metal contact and reduces wear.
  • Oil Additives: Anti-wear additives, antioxidants, and corrosion inhibitors enhance the lubricant’s performance and protect gears from wear and degradation.
  • Frequent Inspections: Regularly inspect the lubricant’s condition to detect contamination, degradation, or depletion. Scheduled oil analysis can help monitor the health of the lubricant.
  • Proper Lubricant Application: Ensure the gearbox is properly filled with the correct amount of lubricant. Follow manufacturer recommendations for lubricant type and quantity.
  • Lubricant Change Intervals: Establish regular lubricant change intervals based on operating conditions. Extreme conditions or heavy loads may require more frequent changes.

Appropriate lubrication minimizes friction, wear, and heat generation, leading to improved efficiency, reduced maintenance, and extended gearbox life. It’s crucial to follow the manufacturer’s guidelines and consult with lubrication experts to select the right lubricant and maintenance practices for your specific helical gearbox application.

China OEM High Torque 10kw AC Gear Motor Inline Helical Gear Box Speed Reducer   synchromesh gearbox	China OEM High Torque 10kw AC Gear Motor Inline Helical Gear Box Speed Reducer   synchromesh gearbox
editor by CX 2024-04-17

China best 220V 380V Speed Reduction AC Induction Electric Motor 100W 200W 400W 750W 1.5kw Helical Reducer Gear Box manufacturer

Product Description

3 Phase AC Reducer Motor 1/2hp 220V 380V 400W Gear Precision Foot Mounted Reducer Motor

CV and CH series motor can be designed as Single phase and 3 phases type. And power range is from 0.1KW to 3.7KW. The motor can be mounted with brake, and brake type is No excitation type. Material of gears is advanced special alloy steel and all gears are carburizing hardening. This gear motor has been added with senior lubricants, and no needs to added lubricants again.

Helical gear reducer has the characteristics of strong versatility, good combination, and strong bearing capacity, and has the advantages of easy access to various transmission ratios, high efficiency, small vibration, and high allowable axial and radial loads.

This series of products can not only be used in combination with various reducers and vibrators to meet the requirements, but also has the advantage of localization of related transmission equipment.
 

Mostly used in metallurgy, sewage treatment,chemical, pharmaceutical and other industries.

 

Type CH series  three phase or single phase ac motors for industrial use 
Voltage 220VAC, 380VAC, 415VAC
Power range Power range is 0.1KW to 3.7KW
Output Speed Speed range is from 7rpm to 500rpm
Phase Single phase and 3phases for choice
Gears Special alloy steel and high precise gears
Grease Good grease and no need add grease during using
Cooling Full closed fan
USE This motor is widely used in
packing machine, textil machine
motor is widely used in mix 
machine,elevator, conveyor,etc.
OEM Service We offer OEM service.

  

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Samples:
US$ 70/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Role of Helical Gearboxes in Automotive Transmissions

Helical gearboxes play a crucial role in automotive transmissions, contributing to the efficient power transfer and smooth operation of vehicles:

  • Power Transmission: Helical gearboxes are used to transmit power from the engine to the wheels through different gear ratios. They help in converting the high-speed, low-torque output of the engine into the appropriate speed and torque for the wheels.
  • Smooth Shifting: In manual and automatic transmissions, helical gears are often used to provide smooth and quiet gear shifts. The gradual engagement of helical gear teeth helps in reducing the shock and noise associated with gear changes.
  • Noise Reduction: Helical gears are known for their quieter operation compared to other gear types. This is especially important in automotive applications where minimizing noise and vibration is desired for a comfortable driving experience.
  • Efficiency: The efficiency of helical gearboxes helps in optimizing fuel efficiency and reducing energy losses. This is crucial for improving the overall performance and economy of vehicles.
  • Load Distribution: Helical gears distribute the load over multiple teeth, reducing wear and ensuring the gearbox’s longevity. This is important in vehicles that experience varying loads and driving conditions.
  • Torque Handling: Helical gears can handle higher torque loads compared to some other gear types. This is essential for vehicles, especially those with powerful engines, towing capabilities, or off-road use.

In modern automotive transmissions, helical gearboxes can be found in various components, including the main transmission, differential, and gearbox synchronizers. They contribute to the smooth operation, improved fuel efficiency, and overall performance of vehicles. The design and arrangement of helical gears can be tailored to meet the specific requirements of different vehicle types, making them a versatile choice for automotive applications.

helical gearbox

Helical Gearboxes and Energy Efficiency

Helical gearboxes play a significant role in enhancing energy efficiency in various industrial processes. Their design and operating characteristics contribute to improved efficiency and reduced energy consumption. Here’s how helical gearboxes achieve energy efficiency:

  • Helical Gear Meshing: Helical gears have inclined teeth that engage gradually, resulting in smoother and quieter meshing compared to other gear types. This smoother engagement reduces impact and friction losses, leading to higher efficiency and lower energy consumption.
  • Load Distribution: Helical gears distribute the load across multiple teeth due to their helix angle. This even load distribution minimizes stress concentrations and prevents premature wear, ensuring efficient power transmission and reducing the need for frequent maintenance.
  • Efficient Power Transmission: The inclined tooth profile of helical gears allows for more teeth to be in contact at any given time. This increased contact area improves power transmission efficiency by reducing sliding friction and minimizing energy losses.
  • Reduced Vibration: The helical tooth engagement minimizes vibration and noise levels, which can be particularly advantageous in applications that require precise and stable operation. Reduced vibration translates to lower energy losses and increased overall efficiency.
  • Optimized Gear Design: Engineers can fine-tune helical gear designs by adjusting parameters such as helix angle, number of teeth, and gear materials. This optimization process helps tailor the gearbox for specific applications, ensuring optimal efficiency and minimal energy wastage.
  • Lubrication and Cooling: Proper lubrication and cooling strategies are crucial for maintaining efficiency. Helical gears benefit from efficient lubrication due to their continuous tooth engagement, which helps reduce friction and wear, further enhancing energy efficiency.
  • Advanced Manufacturing: Modern manufacturing techniques enable precise production of helical gears, ensuring tight tolerances and accurate tooth profiles. This manufacturing precision contributes to minimal energy losses during gear operation.

Overall, helical gearboxes excel in energy efficiency by combining smoother tooth engagement, even load distribution, reduced vibration, and optimized designs. Their ability to transmit power efficiently and reliably makes them a preferred choice for industrial processes where energy conservation is a priority.

helical gearbox

Limitations and Disadvantages of Helical Gear Systems

While helical gear systems offer numerous advantages, they also come with certain limitations and disadvantages:

  • Axial Thrust: Helical gears generate axial thrust due to the helix angle of the teeth. This thrust can cause additional load on bearings and may require additional measures to counteract.
  • Complex Manufacturing: The manufacturing process for helical gears is more complex than that of straight-toothed gears, which can lead to higher production costs.
  • Axial Length: Helical gears require more axial space compared to spur gears with the same gear ratio. This can be a limitation in applications with space constraints.
  • Sliding Contact: Helical gears have sliding contact between their teeth, which can result in higher friction and more heat generation compared to rolling contact gears.
  • Efficiency: Although helical gears are generally efficient, their efficiency can be slightly lower than that of some other gear types, especially at high speeds.
  • Complexity in Gearbox Design: The inclination of helical gear teeth introduces additional complexity in gearbox design and alignment.
  • Reverse Thrust: In some cases, reverse thrust can occur when helical gears are subjected to high axial loads, leading to undesirable effects.

It’s important to consider these limitations and disadvantages when selecting gear systems for specific applications. Despite these challenges, helical gears remain a popular choice in various industries due to their benefits and overall performance characteristics.

China best 220V 380V Speed Reduction AC Induction Electric Motor 100W 200W 400W 750W 1.5kw Helical Reducer Gear Box   manufacturer China best 220V 380V Speed Reduction AC Induction Electric Motor 100W 200W 400W 750W 1.5kw Helical Reducer Gear Box   manufacturer
editor by CX 2024-04-09

China supplier Km Series Hypoid Gear Motor Speed Reducer Gearbox with Electric Motor cycloidal gearbox

Product Description

item

value

Warranty

1 year

Applicable Industries

Manufacturing Plant, Construction works , Energy & Mining, Other

Customized support

OEM

Place of CZPT

ZheJiang , China

Input speed

750-1500rpm

Ratio

7.5 10 12.5

Material

Aluminum

Product name

KM Series Hypoid Gear Reducer

MOQ

10pcs

Color

Customization

PRODUCTS CHARACTERISTICS
1. Mad of high-quality aluminum alloy,light weight and non-rusting
2. Large output torque
3. Smooth in running and low in noise,can work long time in dreadful conditions.
4. High in radiating efficiency.
5. Good-looking in appearance,durable in service life and small in volume.
6. Suitable for omnibearing installation.

FAQ
Q1:Are you a manufacturer or trading company?
 
Yes, We are a leading manufacturer specialized in production of various kinds of small and medium-sized
 motor.

Q2:How to choose a gearbox which meets our requirement?
You can refer to our catalogue to choose the gearbox or we can help to choose when you provide
the technical information of required output torque, output speed and motor parameter etc.

Q3:What information shall we give before placing a purchase order?
a) Type of the gearbox, ratio, input and output type, input flange, mounting position, and motor information etc.
b) Housing color.
c) Purchase quantity.
d) Other special requirements.

Q4:What industries are your gearboxes being used?
Our gearboxes are widely used in the areas of textile, food processing, beverage, chemical industry, escalator,automatic storage equipment, metallurgy, tabacco, environmental protection, logistics and etc.

Q5:How about your delivery time?
For micro brush dc gear motor, the sample delivery time is 2-5 days, bulk delivery time is about 15-20 days, depends on the order qty. For brushless dc motor, the sample deliver time is about 10-15 days; bulk time is 15-20 days.Please take the sales confirmation for final reference.

Q6:What’s your warranty terms?
One year
  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: as for Request
Hardness: Hardened Tooth Surface
Installation: as for Request
Step: as for Request
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Performance of Helical Gearboxes in Applications Requiring Frequent Starts and Stops

Helical gearboxes are well-suited for applications that involve frequent starts and stops due to their design characteristics. Here’s how they fare in such scenarios:

  • Smooth Engagement: Helical gears offer gradual and smooth engagement, which reduces shock loads during starts and stops. This feature helps minimize wear and stress on gear teeth and other components.
  • Noise and Vibration Reduction: The helical tooth arrangement results in less noise and vibration compared to other gear types. This is especially beneficial in applications where noise reduction is a priority.
  • Efficient Power Transmission: Helical gears efficiently transmit power even during frequent starts and stops. The gradual contact between gear teeth and the larger tooth engagement area contribute to efficient power transfer.
  • Less Backlash: Helical gearboxes typically have lower backlash compared to other gear types. This means there’s less play between gear teeth, resulting in more accurate and consistent motion control.
  • Heat Dissipation: The helical tooth design distributes loads and heat more evenly, which can help dissipate heat generated during frequent starts and stops.
  • Longevity: The reduced wear and improved load distribution contribute to the longevity of helical gearboxes, making them suitable for applications requiring frequent cyclic motion.

In summary, helical gearboxes perform well in applications involving frequent starts and stops. Their smooth engagement, reduced noise and vibration, efficient power transmission, and durability make them a reliable choice for industries that demand precise and controlled motion despite frequent changes in speed and direction.

helical gearbox

Considerations for Designing Helical Gearboxes for Heavy-Duty Applications

Designing helical gearboxes for heavy-duty applications requires careful consideration of various factors to ensure reliable and efficient operation under high loads and demanding conditions. Here are the key considerations:

  • Load Capacity: Heavy-duty applications involve substantial loads. The gearbox must be designed to handle these loads while preventing premature wear and failure. Calculations of the load distribution, contact stresses, and material strength are crucial.
  • Material Selection: High-strength and durable materials are essential for heavy-duty gearboxes. Alloy steels or special heat-treated materials are often chosen to provide the necessary strength and resistance to fatigue and wear.
  • Gear Tooth Design: Optimal gear tooth profiles, such as optimized helix angles and tooth modifications, contribute to smoother engagement and reduced stress concentrations. This enhances the gearbox’s ability to handle heavy loads without excessive wear.
  • Bearing Selection: Robust and high-capacity bearings are necessary to support the heavy loads and provide reliable shaft support. The bearings must be able to withstand both radial and axial forces generated during operation.
  • Lubrication: Adequate lubrication is critical for heavy-duty gearboxes. Lubricants with high load-carrying capacity and extreme pressure properties are chosen to ensure proper lubrication under heavy loads and to reduce friction and wear.
  • Heat Dissipation: Heavy-duty applications can generate significant heat due to friction and load. Efficient heat dissipation mechanisms, such as cooling fins or oil cooling, should be incorporated into the gearbox design to prevent overheating and thermal damage.
  • Sealing: Effective sealing is necessary to prevent contaminants from entering the gearbox and to retain lubricants. Seals must be capable of withstanding the conditions of the application, including high loads, vibrations, and potential exposure to harsh environments.
  • Efficiency: Although heavy-duty applications prioritize load capacity, achieving acceptable levels of efficiency is still important to minimize energy losses and heat generation. Proper gear tooth design and high-quality manufacturing contribute to better efficiency.
  • Structural Integrity: The gearbox housing and components must be designed with structural integrity in mind. Rigidity and robustness are required to prevent distortion or failure of components under heavy loads.
  • Reliability and Serviceability: Heavy-duty gearboxes should be designed with reliability and ease of maintenance in mind. Access to critical components, such as gears and bearings, for inspection and replacement is important to minimize downtime.

Conclusion: Designing helical gearboxes for heavy-duty applications involves a comprehensive approach that addresses load capacity, material selection, gear tooth design, lubrication, heat dissipation, sealing, efficiency, structural integrity, and serviceability. By carefully considering these factors, engineers can create gearboxes that deliver exceptional performance and longevity in demanding industrial settings.

helical gearbox

Noise and Vibration Levels in Helical Gearboxes

Helical gearboxes are known for their relatively low noise and vibration levels compared to some other types of gears. However, there are still certain factors that can influence the noise and vibration levels in helical gear systems:

  • Helix Angle: The helix angle of helical gears helps to distribute the load over multiple teeth, reducing impact forces and resulting in smoother meshing. This contributes to lower noise and vibration levels.
  • Precision Manufacturing: High-precision manufacturing processes can ensure better gear tooth geometry and minimize irregularities that could lead to noise and vibration.
  • Lubrication: Proper lubrication is crucial for reducing friction and damping vibrations between gear teeth. Insufficient or improper lubrication can lead to increased noise levels.
  • Alignment: Proper alignment of gears is essential to minimize misalignment-induced noise and vibration. Misalignment can cause uneven tooth contact and lead to increased noise and vibration.
  • Load Distribution: Helical gears distribute loads over multiple teeth, which helps in reducing localized stresses and vibrations that could cause noise.
  • Material Quality: High-quality materials with good damping properties can help absorb vibrations and reduce noise transmission.
  • Operating Conditions: Factors such as operating speed, load, temperature, and gear backlash can influence noise and vibration levels.

Overall, helical gearboxes are designed to provide smoother and quieter operation compared to other gear types. However, the noise and vibration levels can still vary based on design, manufacturing quality, and operational factors. Engineers can optimize gear design and operating conditions to achieve the desired noise and vibration characteristics for specific applications.

China supplier Km Series Hypoid Gear Motor Speed Reducer Gearbox with Electric Motor   cycloidal gearbox	China supplier Km Series Hypoid Gear Motor Speed Reducer Gearbox with Electric Motor   cycloidal gearbox
editor by CX 2024-01-08

China Hot selling RV Worm Gear Electric Motor Speed Reducer Gearbox for Intelligence Equipment gearbox assembly

Product Description

RV Worm Gear Electric Motor Speed Reducer Gearbox for intelligence equipment

 “Bangfeili “brand BH&BV horizontal and vertical gear motor (with the brake) commonly known as reduction motor, is a kind of speed gear motor and motor (motor) the integration of the body. This integration body usually can also be called gear motor, usually assembled by the integration after complete supply by a professional gear reduction motor factory .

RV Series
Including RV / MRV / NRV.
Main Characteristic of RV Series Worm Gearbox
RV series worm gear reducer is a new-generation product developed by CZPT on the basis of perfecting WJ series products with a compromise of advanced technology both at home and abroad.

1. High-quality aluminum alloy, light in weight and non-rusting.
2. Large in output torque.
3. Smooth running and low noise,durable in dreadful conditions.
4. High radiation efficiency.
5. Good-looking appearance, durable in service life and small volume.
6. Suitable for omnibearing installation.

Main Materials of RV Series Worm Gearbox
1. Housing: die-cast aluminum alloy(frame size: 571 to 090), cast iron(frame size: 110 to 150).
2. Worm: 20Crm, carbonization quencher heat treatment makes the surface hardness of worm gears up to 56-62 HRX, retain carbonization layer’s thickness between 0.3 and 0.5mm after precise grinding.
3. Worm Wheel: wearable stannum bronze alloy.

Models Rated Power Rated Ratio Input Hole Dia. Output Hole Dia. Output Shaft Dia.
RV030 0.06KW-0.18KW 7.5-80 Φ9 Φ14 Φ14
RV040 0.06KW-0.18KW 7.5-80 Φ9 Φ14 Φ14
RV050 0.12KW-0.75KW 7.5-100 Φ14 Φ25(Φ24) Φ25
RV063 0.37KW-1.5KW 7.5-100 Φ19 Φ25(Φ28) Φ25
RV075 0.55KW-4.0KW 7.5-100 Φ24 Φ28(Φ35) Φ28
RV090 0.75KW-4.0KW 7.5-100 Φ24 Φ35(Φ38) Φ35
RV110 1.1KW–7.5KW 7.5-100 Φ28 Φ42 Φ42
RV130 2.2KW-7.5KW 7.5-100 Φ30 Φ45 Φ45
Type Worm Gearbox Speed Reducer
Ratio 7.5,10,15,20,25,30,40,50,60,80,100
Color Blue/SilverGrey
Material Aluminum alloy
Worm wheel:Wearable stannum bronze alloy
Worm shaft:20Cr.carbonize&quencher
Packing  Carton,Wooden Case, Wooden pallet
Flange IEC standard flange or customized
Input Power 0.06kw,0.09kw,0.12kw,0.18kw,0.25kw,0.37kw,0.55kw,0.75kw,1.1kw,1.5kw,2.2kw,3.0kw,4.0kw,5.5kw, 7.5kw
Usages Automation industry, medium mixers and so on 

 

FAQ

Q:Are you trading company or manufacture ?
A:We are manu-factory, consist of 3 branch, distributed in East, South and Central of China .

Q: How to choose a gearbox which meets our requirement?
A: You can refer to our catalogue to choose the gearbox or gear motors,or we can help to choose when you provide the technical information ,
     such as : Power ,ratio,output torque, output speed and motor parameter etc.

Q: What information shall we give before placing a purchase order?
A: a) Vertical or Horizontal type, ratio, input and output type, input flange, mounting position, and motor information  etc.
    b) Housing color.   c) Purchase quantity.    d) Other special requirements.

Q:How long is your delivery time ?what’s your term of payment ?
A:Normally around 2-3 days, the time may vary depending on the order quantity.    We accept FOB, CIF price.

Q:How about your paking and export port ?
A:We provide wooden case for machine package.Special requirements is considerable.     We support shipping ports: ZheJiang ,Other shipping port is       considerable.

Q:What about MOQ?
A:We can accept sample order firstly, so there is no limit for MOQ!

Q:What warranty and after sale service do you offer ?
A:Each product have 1 year(12month) warranty.

 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor
Function: Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical and Horizontal
Step: 2/4/6/8 Pole
Customization:
Available

|

Customized Request

helical gearbox

Advancements in Helical Gearbox Technology

Advancements in helical gearbox technology have led to improved performance, efficiency, and versatility. Here are some notable advancements:

  • Material Innovations: The use of advanced materials, such as high-strength alloys and composites, has enhanced the durability and load-carrying capacity of helical gears. These materials also contribute to reduced weight and improved efficiency.
  • Precision Manufacturing: Modern manufacturing techniques, including CNC machining and gear grinding, have enabled the production of helical gears with higher accuracy and tighter tolerances. This results in smoother operation and reduced noise levels.
  • Gear Tooth Profile Optimization: Advanced computer simulations and modeling techniques allow for the optimization of gear tooth profiles. This results in better load distribution, reduced stress concentration, and improved overall gearbox efficiency.
  • Lubrication and Cooling: Improved lubrication systems and cooling mechanisms help maintain optimal operating temperatures and extend the lifespan of helical gearboxes. This is particularly important for high-demand applications.
  • Noise and Vibration Reduction: Innovative designs and precision manufacturing techniques have led to helical gears with reduced noise and vibration levels. This advancement is crucial for industries where noise reduction is a priority.
  • Compact Design: Advancements in gear design and manufacturing have allowed for more compact and lightweight helical gearbox configurations, making them suitable for space-constrained environments.
  • Integration with Electronics: Some modern helical gearboxes are designed for seamless integration with electronic control systems. This enables better monitoring, control, and optimization of gearbox performance.
  • Customization: Advancements in manufacturing and design tools allow for greater customization of helical gearboxes to meet specific application requirements. This includes adapting gear ratios, sizes, and configurations.

In summary, advancements in helical gearbox technology have led to enhanced performance, durability, efficiency, and customization options. These innovations continue to make helical gearboxes a versatile and reliable choice for a wide range of industrial applications.

helical gearbox

Software Tools for Simulating Helical Gear Behavior

Several software tools are available for simulating the behavior of helical gears under different conditions. These tools aid engineers in designing and analyzing helical gear systems for optimal performance and reliability. Some notable software tools include:

  • KISSsoft: KISSsoft is a widely used software for the design and analysis of mechanical components, including helical gears. It offers comprehensive calculations for gear geometry, load distribution, contact stresses, and more. The software assists in optimizing gear designs and predicting their behavior under various operating conditions.
  • AGMA Rating Suite: The American Gear Manufacturers Association (AGMA) offers software tools that follow AGMA standards for gear design and analysis. These tools provide accurate calculations for gear rating, efficiency, and durability under different load scenarios.
  • ANSYS Mechanical: ANSYS Mechanical is a versatile simulation software used for finite element analysis (FEA) of mechanical systems, including helical gears. It allows engineers to perform detailed stress and deformation analysis, simulate contact patterns, and assess the effects of different loads and boundary conditions.
  • Gleason CAGE: Gleason’s Computer-Aided Gear Engineering (CAGE) software specializes in gear design and optimization. It offers advanced tools for gear tooth profile generation, simulation of meshing behavior, and optimization of gear parameters.
  • MAGMA Soft: MAGMA Soft provides casting simulation software that can be used to predict the solidification behavior and mechanical properties of casted gear components, which is essential for ensuring quality and performance.
  • Siemens NX: Siemens NX software includes gear design and analysis capabilities, allowing engineers to simulate gear behavior, calculate load distribution, and optimize gear designs within a comprehensive CAD/CAE environment.

These software tools enable engineers to model and analyze helical gears in a virtual environment, helping them make informed design decisions, optimize gear geometry, and assess gear performance under different conditions. By utilizing these tools, engineers can create reliable and efficient helical gear systems for various industrial applications.

helical gearbox

Handling High Torque and Heavy Loads in Helical Gearboxes

Helical gearboxes are well-suited for handling high torque and heavy loads due to their unique design and meshing characteristics:

  • Helical Teeth: The helical shape of the gear teeth allows for gradual and continuous contact between the teeth during meshing. This results in smoother load distribution and reduced impact forces, making helical gears capable of handling heavy loads.
  • Multiple Tooth Contact: Helical gears have multiple teeth in contact at any given time, spreading the load over a larger area of gear teeth. This helps to distribute the load evenly and prevent localized wear and stress concentrations.
  • Increased Tooth Strength: The inclined orientation of helical gear teeth increases the tooth width, leading to greater tooth strength and improved load-carrying capacity.
  • Bearings and Shaft Design: The gearbox housing is designed to support heavy loads and provide proper alignment for the shafts and bearings. High-quality bearings and shafts help distribute the load and reduce wear.
  • Lubrication: Adequate lubrication is crucial to minimize friction and heat generation between gear teeth. Proper lubrication also helps to dissipate heat generated by the heavy loads.
  • Material Selection: High-strength materials with good wear resistance properties are chosen for helical gears to ensure they can withstand the demands of heavy loads.

Overall, the gradual engagement of helical gear teeth and their ability to handle multiple tooth contact positions them as a reliable choice for applications that require high torque and can handle heavy loads. Engineers carefully design helical gearboxes to ensure they can withstand the stresses imposed by the application’s specific requirements.

China Hot selling RV Worm Gear Electric Motor Speed Reducer Gearbox for Intelligence Equipment   gearbox assembly	China Hot selling RV Worm Gear Electric Motor Speed Reducer Gearbox for Intelligence Equipment   gearbox assembly
editor by CX 2023-12-28

China Custom High Precision Low Backlash Helical Gear Planetary Speed Reducer Gearbox for Servo Motor Manipulator Mechanical Arm best automatic gearbox

Product Description

TaiBang Motor Industry Group Co., Ltd.

The main products is induction motor, reversible motor, DC brush gear motor, DC brushless gear motor, CH/CV big gear motors, Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

Model Instruction
 

GB 090 571 P2
Reducer Series Code External Diameter Reduction Ratio Reducer Backlash
GB:High Precision Square Flange Output

GBR:High Precision Right Angle Square Flange Output

GE:High Precision Round Flange Output

GER:High Precision Right Round Flange Output

050:ø50mm
070:ø70mm
090:ø90mm
120:ø120mm
155:ø155mm
205:ø205mm
235:ø235mm
042:42x42mm
060:60x60mm
090:90x90mm
115:115x115mm
142:142x142mm
180:180x180mm
220:220x220mm
571 means 1:10 P0:High Precision Backlash

P1:Precison Backlash

P2:Standard Backlash

Main Technical Performance
 

Item Number of stage Reduction Ratio GB042 GB060 GB060A GB090 GB090A GB115 GB142 GB180 GB220
Rotary Inertia 1 3 0.03 0.16   0.61   3.25 9.21 28.98 69.61
4 0.03 0.14   0.48   2.74 7.54 23.67 54.37
5 0.03 0.13   0.47   2.71 7.42 23.29 53.27
6 0.03 0.13   0.45   2.65 7.25 22.75 51.72
7 0.03 0.13   0.45   2.62 7.14 22.48 50.97
8 0.03 0.13   0.44   2.58 7.07 22.59 50.84
9 0.03 0.13   0.44   2.57 7.04 22.53 50.63
10 0.03 0.13   0.44   2.57 7.03 22.51 50.56
2 15 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
20 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
25 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
30 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
35 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
40 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
45 0.03 0.03 0.13 0.13 0.47 0.47 2.71 7.42 23.29
50 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
60 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
70 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
80 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
90 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51
100 0.03 0.03 0.13 0.13 0.44 0.44 2.57 7.03 22.51

 

Item Number of stage GB042 GB060 GB060A GB90 GB090A GB115 GB142 GB180 GB220
Backlash(arcmin) High Precision P0 1       ≤1 ≤1 ≤1 ≤1 ≤1 ≤1
2           ≤3 ≤3 ≤3 ≤3
Precision P1 1 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3 ≤3
2 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
Standard P2 1 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5 ≤5
2 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7 ≤7
Torsional Rigidity(N.M/arcmin) 1 3 7 7 14 14 25 50 145 225
2 3 7 7 14 14 25 50 145 225
Noise(dB) 1,2 ≤56 ≤58 ≤58 ≤60 ≤60 ≤63 ≤65 ≤67 ≤70
Rated input speed(rpm) 1,2 5000 5000 5000 4000 4000 4000 3000 3000 2000
Max input speed(rpm) 1,2 10000 10000 10000 8000 8000 8000 6000 6000 4000

 Noise test standard:Distance 1m,no load.Measured with an input speed 3000rpm 

 

Application: Machinery, Agricultural Machinery, Automatic Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Reduction
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step: Double-Step
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Role of Helical Gearboxes in Automotive Transmissions

Helical gearboxes play a crucial role in automotive transmissions, contributing to the efficient power transfer and smooth operation of vehicles:

  • Power Transmission: Helical gearboxes are used to transmit power from the engine to the wheels through different gear ratios. They help in converting the high-speed, low-torque output of the engine into the appropriate speed and torque for the wheels.
  • Smooth Shifting: In manual and automatic transmissions, helical gears are often used to provide smooth and quiet gear shifts. The gradual engagement of helical gear teeth helps in reducing the shock and noise associated with gear changes.
  • Noise Reduction: Helical gears are known for their quieter operation compared to other gear types. This is especially important in automotive applications where minimizing noise and vibration is desired for a comfortable driving experience.
  • Efficiency: The efficiency of helical gearboxes helps in optimizing fuel efficiency and reducing energy losses. This is crucial for improving the overall performance and economy of vehicles.
  • Load Distribution: Helical gears distribute the load over multiple teeth, reducing wear and ensuring the gearbox’s longevity. This is important in vehicles that experience varying loads and driving conditions.
  • Torque Handling: Helical gears can handle higher torque loads compared to some other gear types. This is essential for vehicles, especially those with powerful engines, towing capabilities, or off-road use.

In modern automotive transmissions, helical gearboxes can be found in various components, including the main transmission, differential, and gearbox synchronizers. They contribute to the smooth operation, improved fuel efficiency, and overall performance of vehicles. The design and arrangement of helical gears can be tailored to meet the specific requirements of different vehicle types, making them a versatile choice for automotive applications.

helical gearbox

Helical Gearboxes and Energy Efficiency

Helical gearboxes play a significant role in enhancing energy efficiency in various industrial processes. Their design and operating characteristics contribute to improved efficiency and reduced energy consumption. Here’s how helical gearboxes achieve energy efficiency:

  • Helical Gear Meshing: Helical gears have inclined teeth that engage gradually, resulting in smoother and quieter meshing compared to other gear types. This smoother engagement reduces impact and friction losses, leading to higher efficiency and lower energy consumption.
  • Load Distribution: Helical gears distribute the load across multiple teeth due to their helix angle. This even load distribution minimizes stress concentrations and prevents premature wear, ensuring efficient power transmission and reducing the need for frequent maintenance.
  • Efficient Power Transmission: The inclined tooth profile of helical gears allows for more teeth to be in contact at any given time. This increased contact area improves power transmission efficiency by reducing sliding friction and minimizing energy losses.
  • Reduced Vibration: The helical tooth engagement minimizes vibration and noise levels, which can be particularly advantageous in applications that require precise and stable operation. Reduced vibration translates to lower energy losses and increased overall efficiency.
  • Optimized Gear Design: Engineers can fine-tune helical gear designs by adjusting parameters such as helix angle, number of teeth, and gear materials. This optimization process helps tailor the gearbox for specific applications, ensuring optimal efficiency and minimal energy wastage.
  • Lubrication and Cooling: Proper lubrication and cooling strategies are crucial for maintaining efficiency. Helical gears benefit from efficient lubrication due to their continuous tooth engagement, which helps reduce friction and wear, further enhancing energy efficiency.
  • Advanced Manufacturing: Modern manufacturing techniques enable precise production of helical gears, ensuring tight tolerances and accurate tooth profiles. This manufacturing precision contributes to minimal energy losses during gear operation.

Overall, helical gearboxes excel in energy efficiency by combining smoother tooth engagement, even load distribution, reduced vibration, and optimized designs. Their ability to transmit power efficiently and reliably makes them a preferred choice for industrial processes where energy conservation is a priority.

helical gearbox

Helical Gearbox: Overview and Working Mechanism

A helical gearbox is a type of mechanical device used to transmit power and motion between rotating shafts. It employs helical gears, which are cylindrical gears with teeth that are cut at an angle to the gear axis. This design feature gives helical gearboxes their distinctive helical shape and provides several advantages in terms of efficiency, smoothness, and load-bearing capabilities.

The working mechanism of a helical gearbox involves the interaction of helical gears, which mesh together to transmit torque and motion. Here’s how it works:

  1. Gear Tooth Engagement: When power is applied to the input shaft of the gearbox, the helical gear on the input shaft meshes with the helical gear on the output shaft.
  2. Helical Angle: The helical angle of the gear teeth causes a gradual engagement between the teeth, resulting in a smooth and quiet meshing process compared to straight-cut gears.
  3. Torque Transfer: As the input gear rotates, it transfers rotational force (torque) to the output gear through the meshing of their helical teeth.
  4. Direction of Rotation: Depending on the arrangement of the helical gears, the output shaft’s direction of rotation can be the same as or opposite to that of the input shaft.
  5. Load Distribution: The helical design allows for multiple teeth to be engaged at any given moment, distributing the load more evenly across the gears. This results in higher load-carrying capacity and reduced wear on gear teeth.
  6. Efficiency: Helical gearboxes are known for their high efficiency due to the gradual tooth engagement and larger contact area, resulting in minimal energy loss as compared to other gear types.

Helical gearboxes find applications in various industries where smooth operation, high efficiency, and compact design are important. They are commonly used in machinery, conveyors, automotive transmissions, industrial equipment, and more.

China Custom High Precision Low Backlash Helical Gear Planetary Speed Reducer Gearbox for Servo Motor Manipulator Mechanical Arm   best automatic gearbox	China Custom High Precision Low Backlash Helical Gear Planetary Speed Reducer Gearbox for Servo Motor Manipulator Mechanical Arm   best automatic gearbox
editor by CX 2023-12-15

China supplier Coaxial Helical Gear Motors 1400 Rpm Motor Speed Reducer Gearbox for Manufacturing with high quality

Product Description

Coaxial Helical Gear Motors 1400 Rpm Motor Speed Reducer Gearbox for Manufacturing 

Product Description


Components:
1. Housing: Cast Iron
2. Gears: Helical Gears
3. Input Configurations:
Equipped with Electric Motors
Solid Shaft Input
IEC or NEMA Motor Flange
4. Applicable Motors:
Single Phase AC Motor, Three Phase AC Motor
Brake Motors
Inverter Motors
Multi-speed Motors
Explosion-proof Motor
Roller Motor
5. Output Configurations:
Solid Shaft Output

Detailed Photos

Models:
R Series (Foot-mounted): R18~R168
RS Series (Foot-mounted, CZPT Shaft Input)
RF Series (Flange-mounted): RF18~RF168
RFS Series (Flange-mounted, CZPT Shaft Input)
RX Series (1 Stage, Foot-mounted): RX38~RX158
RXS Series (1 Stage, Foot-mounted, CZPT Shaft Input)
RXF Series (1 Stage, Flange-mounted): RXF38~RXF158
RXFS Series (1 Stage, Flange-mounted, CZPT Shaft Input)
RM Series (agitator gearboxes): Specially designed for agitating applications
Features:
1. Compact structure, modular design
2. Single-stage, two-stage and three-stage sizes
3. High reduction ratio and torque density
4. Long service life
5. Can be combined with other types of gearboxes (Such as R Series, K Series, F Series, S Series, UDL Series)
Parameters:
2 Stage or 3 Stage
Installation:
Foot Mounted
Flange Mounted
Lubrication:
Oil-bath and Splash Lubrication
Cooling:
Natural Cooling
 

Product Parameters

Models Output Shaft Dia. Input Shaft Dia. Power(kW) Ratio Max. Torque(Nm)
R/RF18 20mm 0.18~0.75 3.83~74.84 85
R/RF28 25mm 16mm 0.18~3 3.37~135.09 130
R/RF38 25mm 16mm 0.18~3 3.41~134.82 200
R/RF48 30mm 19mm 0.18~5.5 3.83~176.88 300
R/RF58 35mm 19mm 0.18~7.5 4.39~186.89 450
R/RF68 35mm 19mm 0.18~7.5 4.29~199.81 600
R/RF78 40mm 24mm 0.18~11 5.21~195.24 820
R/RF88 50mm 28mm 0.55~22 5.36~246.54 1550
R/RF98 60mm 38mm 0.55~30 4.49~289.6 3000
R/RF108 70mm 42mm 2.2~45 5.06~245.5 4300
R/RF138 90mm 55mm 5.5~55 5.51~223.34 8000
R/RF148 110mm 55mm 11~90 5.00~163.46 13000
R/RF168 120mm 70mm 11~160 8.77~196.41 18000

1 Stage

Models Output Shaft Dia. Input Shaft Dia. Power(kW) Ratio Max. Torque(Nm)
RX/RXF38 20mm 16mm 0.18~1.1 1.6~3.76 20
RX/RXF58 20mm 19mm 0.18~5.5 1.3~5.5 70
RX/RXF68 25mm 19mm 0.18~7.5 1.4~6.07 135
RX/RXF78 30mm 24mm 1.1~11 1.42~5.63 215
RX/RXF88 40mm 28mm 3~22 1.39~6.44 400
RX/RXF98 50mm 38mm 5.5~30 1.42~5.82 600
RX/RXF108 60mm 42mm 7.5~45 1.44~6.65 830
RX/RXF128 75mm 55mm 7.5~90 1.56~6.47 1110
RX/RXF158 90mm 70mm 11~132 1.63~6.22 1680

Packaging & Shipping

Packaging & Delivery
Speed Reducer Worm Gearbox Packaging Details:Plastic Bags, Plywood Cases
Port:ZheJiang /HangZhou

Company Profile

1.More than 35 years experience in R&D and manufacturing, export gear motors & industrial gearboxes.
2. Standardization of the gearbox series
3. Strong design capability for large power & customized gearboxes.
4. High quality gearboxes and proven solutions provider.
5. Strict quality control process, stable quality.
6. Less than 2% of the quality complaints.
7. Modular design, short delivery time.
8. Quick response & professional services.

Customer visiting:

After Sales Service

Pre-sale services 1. Select equipment model.
2.Design and manufacture products according to clients’ special requirement.
3.Train technical personal for clients
Services during selling 1.Pre-check and accept products ahead of delivery.
2. Help clients to draft solving plans.
After-sale services 1.Assist clients to prepare for the first construction scheme.
2. Train the first-line operators.
3.Take initiative to eliminate the trouble rapidly.
4. Provide technical exchanging.

FAQ

1.Q:What kinds of gearbox can you produce for us?

A:Main products of our company: UDL series speed variator,RV series worm gear reducer, ATA series shaft mounted gearbox, X,B series gear reducer,
P series planetary gearbox and R, S, K, and F series helical-tooth reducer, more
than 1 hundred models and thousands of specifications
2.Q:Can you make as per custom drawing?
A: Yes, we offer customized service for customers.
3.Q:What is your terms of payment ?
A: 30% Advance payment by T/T after signing the contract.70% before delivery
4.Q:What is your MOQ?
A: 1 Set

If you are interested in our product, welcome you contact me.
Our team will support any need you might have.

Application: Machinery, Industry
Hardness: Hardened
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Helical Gear
Step: Single-Step
Customization:
Available

|

Customized Request

helical gearbox

Maintenance Tips to Prolong the Lifespan of Helical Gearboxes

Proper maintenance is essential to ensure the longevity and optimal performance of helical gearboxes. Here are some maintenance tips:

  • Regular Inspections: Conduct routine visual inspections to check for any signs of wear, damage, or oil leakage. Detecting issues early can prevent further damage.
  • Lubrication: Follow the manufacturer’s recommendations for lubrication intervals and use the correct type of lubricant. Proper lubrication reduces friction and wear between gear teeth.
  • Cleanliness: Keep the gearbox environment clean and free from contaminants that could enter the gearbox and affect its performance.
  • Tighten Fasteners: Check and tighten any loose fasteners or mounting bolts to ensure the gearbox remains securely in place.
  • Alignment: Properly align the gearbox with connected equipment to prevent excessive loads and wear on the gear teeth.
  • Temperature Monitoring: Monitor the operating temperature of the gearbox. Excessive heat can lead to premature wear and reduced efficiency.
  • Vibration Analysis: Regularly analyze gearbox vibration levels to detect any unusual vibrations that might indicate issues with gear meshing or other components.
  • Seal Integrity: Ensure that seals and gaskets are in good condition to prevent oil leakage and contamination.
  • Load Considerations: Avoid overloading the gearbox beyond its specified capacity. High loads can accelerate wear and damage.

By following these maintenance practices, you can extend the lifespan of helical gearboxes and minimize the risk of unexpected failures. Regular maintenance not only reduces downtime and repair costs but also contributes to the efficient and reliable operation of equipment.

helical gearbox

Impact of Thermal Expansion on Helical Gearbox Performance

Thermal expansion can significantly affect the performance of helical gearboxes due to changes in dimensions and clearances caused by temperature variations. Here’s how it impacts:

1. Misalignment: Temperature changes can lead to differential expansion of gearbox components. This can result in misalignment of gears, shafts, and bearings, leading to increased friction, noise, and reduced efficiency.

2. Lubrication: Thermal expansion can alter the clearances within the gearbox, affecting the distribution and viscosity of the lubricating oil. Inadequate lubrication due to temperature-induced changes can result in increased wear and premature failure.

3. Gear Tooth Engagement: Temperature fluctuations can cause gear teeth to expand or contract, affecting the meshing engagement and load distribution. Inconsistent gear tooth contact can lead to uneven wear and reduced gear life.

4. Bearing Performance: Bearings in helical gearboxes are sensitive to temperature changes. Excessive heat can lead to reduced bearing life, increased friction, and potential seizure, affecting overall gearbox performance.

5. Noise and Vibration: Thermal expansion can lead to changes in gear and component clearances, resulting in altered vibration patterns and increased noise levels. This can impact the comfort of the system and indicate potential issues.

6. Material Fatigue: Repeated cycles of thermal expansion and contraction can lead to material fatigue and stress accumulation, reducing the overall lifespan of gearbox components.

Managing Thermal Effects: Manufacturers design helical gearboxes with considerations for thermal expansion, using materials with low coefficients of thermal expansion and incorporating features like expansion joints or thermal isolators. Proper lubrication, monitoring temperature, and maintaining consistent operating conditions are also crucial in mitigating thermal expansion effects.

Understanding and managing the impact of thermal expansion is essential to maintain the performance, efficiency, and durability of helical gearboxes.

helical gearbox

Industries Utilizing Helical Gearboxes

Helical gearboxes find widespread use in various industries due to their efficiency, smooth operation, and versatility. Some of the industries that commonly utilize helical gearboxes include:

  • Manufacturing: Helical gearboxes are employed in manufacturing processes for conveyor systems, material handling, and machine tools. Their ability to provide high torque and smooth motion makes them suitable for precision manufacturing.
  • Automotive: Automotive applications include power transmission in vehicles, especially in manual and automatic transmissions. Helical gearboxes contribute to improved fuel efficiency and smoother gear shifting.
  • Energy Generation: Helical gearboxes are used in power generation systems, such as wind turbines and hydroelectric generators. Their efficiency and load-bearing capacity are crucial for converting rotational motion into electrical power.
  • Construction: Construction equipment, such as cranes, excavators, and bulldozers, rely on helical gearboxes for efficient power transmission and control of heavy loads.
  • Mining: Mining operations use helical gearboxes in conveyors, crushers, and other equipment for material handling and ore extraction. The durability and high torque capacity of helical gearboxes make them suitable for demanding mining environments.
  • Marine: Marine vessels use helical gearboxes in propulsion systems to convert engine power into rotational motion for propellers. Their efficiency contributes to fuel savings and reliable marine operation.
  • Food and Beverage: Helical gearboxes are employed in food processing and packaging machinery due to their sanitary design and precise motion control.
  • Textile: Textile machinery relies on helical gearboxes for various processes, including spinning, weaving, and dyeing. Their ability to handle varying loads and provide smooth motion is beneficial in textile production.

The adaptability and efficiency of helical gearboxes make them a suitable choice for a wide range of industries, where reliable power transmission, smooth operation, and load-bearing capacity are essential.

China supplier Coaxial Helical Gear Motors 1400 Rpm Motor Speed Reducer Gearbox for Manufacturing   with high quality China supplier Coaxial Helical Gear Motors 1400 Rpm Motor Speed Reducer Gearbox for Manufacturing   with high quality
editor by CX 2023-11-15

China Good quality High Speed Transmission Gearbox Reducer 0.2kw Induction Motor and Gearbox helical gearbox elecon

Product Description

Product Description

High speed transmission gearbox reducer 0.2kw induction motor and gearbox

1.KM series Helical-hypoid Gearbox’s Characteristics
KM series helical-hypoid gearbox is a new-generation of product developed by Aokman. With a compromise of advanced technology both at home and abroad, its main features are as follows:
(1) Driven by hypoid gears, which has big ratios.
(2) Large output torque, high efficiency, energy saving and environmental protection.
(3) High-quality aluminum alloy housing, and light in weight and non-rusting.
(4) Smooth in running and low in noise, and can work long time in dreadful conditions.
(5) Good-looking in appearance, durable in service life and small in volume.
(6) Suitable for all round installation, wide application and easy use.
(7) The mounting dimension of KM series helical-hypoid gearbox are compatible with RV series worm gearbox.
(8) Modular and multi-structure can meet the demands of various conditions.

Detailed Photos

2. KM series Helical-hypoid Gearbox’s Main Materials
(1) Housing: die-cast aluminum alloy (frame size 27 to 57)
(2) Gear wheel: 20CrMnTiH1 carbonizing & quenching heat treatment make the hardness of gears surface be up to 56-62 HRC, and be retained carburization layers thickness between 0.3 and 0.5mm after precise grinding.
3. KM series Helical-hypoid Gearbox’s Surface Painting
Aluminum alloy housing:
(1) Shot blasting and special antiseptic treatment on the aluminum alloy surface.
(2) After phosphating, spray the RAL9571 silver white paint.4.Gearbox Parameters

Product Parameters

 

Models Stage Nominal Ratio Output Speed (n2)* Max. Torque Input Shaft Dia. Output Hole Dia. Output Shaft Dia.
KM050 3 Stage 50~300 4.8~27 130N.m Φ11 Φ20, Φ24 Φ25
2 Stage 7.5~60 24~181 130N.m Φ11
KM063 3 Stage 50~300 4.6~27 200N.m Φ11 Φ25, Φ28 Φ25
2 Stage 7.5~60 23~184 200N.m Φ14
KM075 3 Stage 50~300 4.7~28 350N.m Φ14 Φ28, Φ30, Φ35 Φ28
2 Stage 7.5~60 24~187 350N.m Φ16
KM090 3 Stage 50~300 4.7~28 500N.m Φ14 Φ35, Φ38 Φ35
2 Stage 7.5~60 24~187 500N.m Φ19
KM110 3 Stage 50~300 4.7~27 750N.m Φ19 Φ40, Φ42 Φ42
2 Stage 7.5~60 24~187 750N.m Φ24

Packaging & Shipping

Company Profile

Our Advantages

After Sales Service

Pre-sale services 1. Select equipment model.
2.Design and manufacture products according to clients’ special requirement.
3.Train technical personal for clients
Services during selling 1.Pre-check and accept products ahead of delivery.
2. Help clients to draft solving plans.
After-sale services 1.Assist clients to prepare for the first construction scheme.
2. Train the first-line operators.
3.Take initiative to eliminate the trouble rapidly.
4. Provide technical exchanging.

FAQ

1.Q:What kinds of gearbox can you produce for us?

A:Main products of our company: UDL series speed variator,RV series worm gear reducer, ATA series shaft mounted gearbox, X,B series gear reducer,
P series planetary gearbox and R, S, K, and F series helical-tooth reducer, more
than 1 hundred models and thousands of specifications
2.Q:Can you make as per custom drawing?
A: Yes, we offer customized service for customers.
3.Q:What is your terms of payment ?
A: 30% Advance payment by T/T after signing the contract.70% before delivery
4.Q:What is your MOQ?
A: 1 Set

If you have any demand for our products please feel free to contact me.

Application: Motor, Machinery
Function: Speed Changing, Speed Reduction
Layout: Orthogonal
Hardness: Hardened Tooth Surface
Installation: Industry
Step: Double or Three-Step
Customization:
Available

|

Customized Request

helical gearbox

What Is a Helical Gearbox?

Generally, the gear is a rotating circular machine part, and its purpose is to transmit speed and torque. It works by meshing with other toothed parts. This type of gear is made up of cut teeth, inserted teeth, and gear teeth.

Helix angle

Typical helical gearbox angle ranges from 15 to 30 degrees. It is commonly used in worm gears and screws. The angle is important in motion conversion and power transfer.
Helical gearboxes are suitable for high load applications. Because the teeth engage more gradually, helical gearboxes require bearings that can manage axial loading. In fact, the forces produced by helical gears are much less than those of spur gears. Moreover, helical gearboxes are often less efficient.
There are two basic gear systems: the spur gear system and the helical gear system. These systems are similar in their basic functions. However, they are distinguished by a number of important differences. The spur gear system produces thrust forces, while the helical gear system transmits energy through two axial configurations. Both systems operate at speeds of around 50m/s.
Spur gears have a common pitch, whereas helical gears have a different pitch. The pitch of helical gears changes as the helix angle changes. This leads to a difference in the diameter of the gear and the hobs. This changes the radial module system pitch and increases the manufacturing costs.
The normal pressure angle is the angle of the load line into the plane normal to the tooth axis. This angle is sometimes called the reference value.
Helical gears are available in both left-hand and right-hand configurations. Helical gears are typically characterized by quiet operation and higher power carrying capacity. They are also appreciated for their NVH characteristics. They are used in the oil, food, and plastic industries. They also have a higher efficiency than zero-helix angle gears.

Efficiency

Using helical gears in a gearbox provides several benefits. They are more efficient, quieter and better able to handle high load cases. However, they are also more expensive than classic gears.
The efficiency of a helical gearbox is calculated by measuring the efficiency of the entire working area. This is measured using a predefined measuring grid. The result is presented by an efficiency contour map. It shows that efficiency is not uniform in the working area.
This is because of the varying angles of the teeth of the gears. It is also important to consider the size of the pitch circle and the angle of the helix. The pitch circle is larger for helical gears than for spur gears. This means more surface contact and more potential for transmission of power between the parallel shafts.
Efficiency calculations for synchronizers are relatively new. Using data from power losses can help estimate the accuracy of these calculations.
The efficiency of a gearbox is mainly dependent on the power range and the torque. The higher the range, the better the efficiency. When the power range is reduced, the efficiency is reduced. The efficiency decreases sharply for high ratio gearboxes.
The efficiency of a gearbox also depends on the type of gearbox. Typically, spur gears are the most efficient, but helical gears are also quite efficient. In the same way that an electrical motor is more efficient than a standard cylinder engine, helical gears are more efficient than spur gears.helical gearbox

Applications

Various industries utilize helical gearboxes for different applications. These gears are primarily used in heavy industrial settings and are also used in the printing and plastic industries.
They are useful in transferring motion between parallel and right-angle shafts. Helical gears are more durable and offer smoother gear operation than other gear types. They are also less noisy and produce less friction.
Typical applications of helical gearboxes include conveyors, coolers, crushers, and other heavy industrial applications. They are also used in the food, chemical, and printing industries.
There are two main types of helical gearboxes: single helical gearboxes and double helical gearboxes. In the single gearbox, the teeth are at a certain angle to the axis. In the double gearbox, the teeth are at opposite angles.
Both gear types have their own advantages. The spur type is more suited for low-speed applications and is also less expensive to manufacture. However, helical gears are more efficient. They are also less noisy and have more teeth meshing capacity.
Helical gears also have a greater pitch circle diameter than spur gears. Because of this, they can tolerate a greater load and are more durable. The helical gearbox also uses thrust bearings to support the thrust force. In order to ensure smooth operation, the helical gears gradually engage.
Helical gears are also used in the automotive industry. They are the most common gear type used in the automotive transmission process.

Spiral teeth vs helical teeth

Depending on the application, there are two types of bevel gears: helical gears and spiral teeth bevel gears. They have a similar geometry, but they perform differently. While helical gears provide smoother operation and higher load carrying capacity, spiral teeth bevel gears are more flexible, reduce the risk of overheating, and have longer service life.
Helical gears are primarily used for helical or crossed shafts. They have teeth that are cut at a precise angle to the gear axis. They provide a smooth action during heavy loads and are used at high speeds. They can also be used for non-parallel shafts. However, they are less efficient than spur gears.
Spur gears are primarily used for parallel shafts. Their straight teeth are parallel to the gear axis. Their teeth come in sudden contact, which causes vibration and a noticeable noise. However, helical gears provide gradual engagement, minimizing vibration and backlash.
The root stress of helical gears is different from spur gears. It is dependent on the helix angle and the web thickness of the gear. The pressure angle of the teeth also affects the curvature radii. These factors affect the transverse contact ratio, which decreases the length of the contact line.
Helical gears are often used to change the angle of rotation by 90 degrees. They can also be used to eliminate shock loading. These gears can be used on parallel or crossed shafts.

PB and PLB Series

PB and PLB series helical gearboxes offer a bevy of benefits that include high power density and a compact modular design. Aside from offering a high output torque, they also offer low maintenance and a long life span. The manufacturers have also gone to great lengths to provide a robust case, a rigid worm and screw thread arrangement and a high reduction ratio. They also provide parallel shaft input options. This means you can use one gearbox to drive a whole train of synchronized gears.
Aside from the fact that it is one of the most durable gearboxes available, it is also one of the most versatile. In fact, the company manufactures a number of gearbox variants, ranging from a single gearbox to a fully modular multiple gearbox design. The high power density means it can operate in tight industrial spaces. PB and PLB series helical Gearboxes are available in a range of sizes, ensuring you find the perfect fit for your application. The PB and PLB Series helical gearboxes are also a cost-effective option for your next application. The company is also able to offer custom solutions to meet your specific needs.
The best part is that you can get your hands on these Gearboxes at a price that is well worth your hard earned dollars. The manufacturers also offer an industry leading warranty. PB and PLB series helical and worm gearboxes are available in a variety of sizes and configurations to suit your application.helical gearbox

Herringbone gears

Using Herringbone gears in helical gearboxes can give the advantages of quiet operation at high speed and minimal axial force. These gears can also be used in heavy machinery applications. However, manufacturing them is more difficult and expensive.
Herringbone gears are similar to double helical gears, except that they do not have a central gap. Originally, they were made by casting to an accurate pattern.
Today, they are characterized by two sets of gear teeth that are stuck together. They have a very high coincidence, which increases the bearing capacity of the gearbox. They also reduce wear and noise.
These gears are usually smaller than double helical gears. This makes them ideal for applications where vibration is high. The large contact area reduces stress. They also have a high carrying capacity. They are used in transmissions, heavy machinery, and differentials.
Herringbone gears are also used in torque gearboxes, especially those that do not have a significant thrust bearing. However, their use is less common because of manufacturing difficulties.
There are several solutions to the problem of making herringbone gears. One solution is to use a central groove to cut the gears. Another is to stack two helical gears together. Another solution is to use older machines that can be rebuilt to make herringbone gears.
Herringbone gears can be processed using milling methods. However, this method cannot be used to process all herringbone gears.
China Good quality High Speed Transmission Gearbox Reducer 0.2kw Induction Motor and Gearbox   helical gearbox eleconChina Good quality High Speed Transmission Gearbox Reducer 0.2kw Induction Motor and Gearbox   helical gearbox elecon
editor by CX 2023-11-12

China supplier Desboer ND110 Series Ratio16-100 Helical Precision Speed Reducer Planetary Gearbox for Servo Stepper Motor Tool Industrial Automation Robotics Laser Cutting Mac gearbox assembly

Product Description

Product Description

The ND110 series planetary gearboxes are designed and machined as a single unit with special tapered roller bearings to provide high radial load, high torque, ultra-precision, and small size. The ND series uses in highly rigid industries such as fiber optic laser equipment, floor track equipment, robot seventh axis, Parallel robots (spider hand) machine tools, and rotating arms.
Product Name: High Precision Planetary Reducer
Product Series: ND110 Series
Product features: high torque, high load, ultra-precision, small size
Product Description:
Integrated design concept with high-strength bearings ensure the product itself is durable and efficient
A variety of output ideas such as shaft output, flange and gear are available.
1 arc minute ≤ backlash ≤ 3 arc minutes
Reduction ratios ranging from 3 to 100
Frame design: increases torque and optimizes power transmission
Optimised selection of oil seals: reduces friction and laminate transmission efficiency
Protection class IP65
Warranty: 2 years

Our Advantages

High torque
High load
ultra-precision
Small size

Detailed Photos

 

Product Parameters

Segment number Single segment
Ratio i 4 5 7 10
Rated output torque Nm 250 310 280 210
Emergency stop torque Nm Three times of Maximum Output Torque
Rated input speed Rpm 4000
Max input speed Rpm 8000
Ultraprecise backlash arcmin ≤1
Precision backlash arcmin ≤3
Standard backlash arcmin ≤5
Torsional rigidity Nm/arcmin 82
Max.bending moment Nm 430
Max.axial force N 2990
Service life hr 30000(15000 under continuous operation)
Efficiency % ≥97%
Weight kg 5.6
Operating Temperature ºC -10ºC~+90ºC
Lubrication   Synthetic grease
Protection class   IP64
Mounting Position   All directions
Noise level(N1=3000rpm,non-loaded) dB(A) ≤60
Rotary inertia Kg·cm² 2.87 2.71 2.62 2.57

Applicable Industries

 

                              Packaging   Machinery                              Mechanical  Hand                                                         Textile  Machinery

                   Non  Standard  automation                                          Machine  Tool                                                       Printing   Equipment

Certifications

 

 

Company Profile

 

DESBOER (HangZhou) Transmission Technology Co., Ltd. is a subsidiary of DESBOER (China), which is committed to the design, development, customized production and sales of high precision planetary reducer as 1 of the technology company. Our company has over 10 years of design, production and sales experience, the main products are the high precision planetary reducer, gear, rack, etc., with high quality, short delivery period, high cost performance and other advantages to better serve the demand of global customers. It is worth noting that we remove the intermediate link sale from the factory directly to customers, so that you can get the most ideal price and also get our best quality service simultaneously.

 

About Research

In order to strengthen the advantages of products in the international market, the head company in Kyoto, Japan to established KABUSHIKIKAISYA KYOEKI, mainly engaged in the development of DESBOER high precision planetary reducer, high precision of transmission components such as the development work, to provide the most advanced design technology and the most high-quality products for the international market.

 

 

 

Application: Motor, Machinery, Marine, Agricultural Machinery, CNC Machine
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Plantery Type
Hardness: Hardened Tooth Surface
Installation: All Directions
Step: Single-Step
Customization:
Available

|

Customized Request

helical gearbox

Installation and Alignment of Helical Gearboxes

Proper installation and alignment of a helical gearbox are essential to ensure its optimal performance and longevity. Here are the steps involved:

  1. Preparation: Gather all necessary tools, equipment, and safety gear. Ensure the work area is clean and well-lit.
  2. Mounting: Position the gearbox on the designated mounting surface and secure it using appropriate bolts. Follow the manufacturer’s guidelines for mounting torque and procedures.
  3. Shaft Alignment: Use precision tools such as dial indicators to align the input and output shafts. Achieving accurate shaft alignment minimizes stress on the gears and bearings.
  4. Bolt Tightening: Gradually and evenly tighten the mounting bolts, ensuring the gearbox remains properly aligned. Refer to torque specifications provided by the manufacturer.
  5. Lubrication: Fill the gearbox with the recommended lubricant according to the manufacturer’s specifications. Proper lubrication is crucial for reducing friction and wear.
  6. Alignment Check: After tightening the bolts, recheck the shaft alignment to ensure it hasn’t shifted during the tightening process.
  7. Run-In Period: Gradually introduce load to the gearbox to allow the gears to seat properly. Monitor the gearbox for any unusual noises, vibrations, or temperature changes during this period.
  8. Final Checks: Verify that the gearbox operates smoothly, without excessive noise or vibrations. Monitor the gearbox’s temperature during operation to ensure it remains within recommended limits.
  9. Regular Inspection: Schedule periodic inspections to check for any signs of wear, misalignment, or leakage. Address any issues promptly to prevent further damage.

It’s important to follow the manufacturer’s installation and alignment guidelines specific to the helical gearbox model you’re working with. Improper installation and alignment can lead to premature wear, reduced efficiency, and potential failure of the gearbox.

helical gearbox

Software Tools for Simulating Helical Gear Behavior

Several software tools are available for simulating the behavior of helical gears under different conditions. These tools aid engineers in designing and analyzing helical gear systems for optimal performance and reliability. Some notable software tools include:

  • KISSsoft: KISSsoft is a widely used software for the design and analysis of mechanical components, including helical gears. It offers comprehensive calculations for gear geometry, load distribution, contact stresses, and more. The software assists in optimizing gear designs and predicting their behavior under various operating conditions.
  • AGMA Rating Suite: The American Gear Manufacturers Association (AGMA) offers software tools that follow AGMA standards for gear design and analysis. These tools provide accurate calculations for gear rating, efficiency, and durability under different load scenarios.
  • ANSYS Mechanical: ANSYS Mechanical is a versatile simulation software used for finite element analysis (FEA) of mechanical systems, including helical gears. It allows engineers to perform detailed stress and deformation analysis, simulate contact patterns, and assess the effects of different loads and boundary conditions.
  • Gleason CAGE: Gleason’s Computer-Aided Gear Engineering (CAGE) software specializes in gear design and optimization. It offers advanced tools for gear tooth profile generation, simulation of meshing behavior, and optimization of gear parameters.
  • MAGMA Soft: MAGMA Soft provides casting simulation software that can be used to predict the solidification behavior and mechanical properties of casted gear components, which is essential for ensuring quality and performance.
  • Siemens NX: Siemens NX software includes gear design and analysis capabilities, allowing engineers to simulate gear behavior, calculate load distribution, and optimize gear designs within a comprehensive CAD/CAE environment.

These software tools enable engineers to model and analyze helical gears in a virtual environment, helping them make informed design decisions, optimize gear geometry, and assess gear performance under different conditions. By utilizing these tools, engineers can create reliable and efficient helical gear systems for various industrial applications.

helical gearbox

Limitations and Disadvantages of Helical Gear Systems

While helical gear systems offer numerous advantages, they also come with certain limitations and disadvantages:

  • Axial Thrust: Helical gears generate axial thrust due to the helix angle of the teeth. This thrust can cause additional load on bearings and may require additional measures to counteract.
  • Complex Manufacturing: The manufacturing process for helical gears is more complex than that of straight-toothed gears, which can lead to higher production costs.
  • Axial Length: Helical gears require more axial space compared to spur gears with the same gear ratio. This can be a limitation in applications with space constraints.
  • Sliding Contact: Helical gears have sliding contact between their teeth, which can result in higher friction and more heat generation compared to rolling contact gears.
  • Efficiency: Although helical gears are generally efficient, their efficiency can be slightly lower than that of some other gear types, especially at high speeds.
  • Complexity in Gearbox Design: The inclination of helical gear teeth introduces additional complexity in gearbox design and alignment.
  • Reverse Thrust: In some cases, reverse thrust can occur when helical gears are subjected to high axial loads, leading to undesirable effects.

It’s important to consider these limitations and disadvantages when selecting gear systems for specific applications. Despite these challenges, helical gears remain a popular choice in various industries due to their benefits and overall performance characteristics.

China supplier Desboer ND110 Series Ratio16-100 Helical Precision Speed Reducer Planetary Gearbox for Servo Stepper Motor Tool Industrial Automation Robotics Laser Cutting Mac   gearbox assembly	China supplier Desboer ND110 Series Ratio16-100 Helical Precision Speed Reducer Planetary Gearbox for Servo Stepper Motor Tool Industrial Automation Robotics Laser Cutting Mac   gearbox assembly
editor by CX 2023-11-02