Tag Archives: two stage gearbox

China Good quality High Torque Zplx142 Planetary Gearbox Two Stage Reduction car gearbox

Product Description

Relate recommend ?
Planetary gearbox : size 242 and custom size  within 1 stage, 2 stage, 3 stage.
Ac servo motor :Delta, Yasakawa,Panasonic, Mistubishi and economic type
PLC: CZPT semensis Mistubishi and etc
Linear Components: HIWIN, TBI, PMI, ABBA, THK, CPC , and economic type.

High Torque ZPLX142 Planetary Gearbox Two Stage Reduction

-Planetary gearbox is a widely used industrial product, which can reduce the speed of motor and increase the output torque. Planetary reducer can be used as supporting parts in lifting, excavation, transportation, construction and other industries.

-Stage Ratio : 12,16,20,25,32,40,64
-Net Weight: 31.5Kg
-Product picture

-Datasheet

-Company introduction
FOCUS is an automation & drive focused global company, providing global customers with control, display, drive and system solutions & other related products and services, under the support of its excellent electrical and electronic technology as well as strong control technical force.
 
We provide and develop perfect products and solutions according to different requirement of the industry. Our products have been used and applied successfully in packing, printing, textiles, plastic injection, elevator, machine tool, robot,wood cutting, stone carving, ceramic, glass, paper making industry, crane, fan & pump, new energy resources etc.

FOCUS, your professional electrical partner !

-Payment & Package & Delivery 
1,Payment
( T/T , Western union, Paypal , L/C and so on )
2,Pakcage
( Small gearbox use carton package, Big gearbox use wooden box package ) 
3,Delivery
( By International Express,  By Air , By Sea )

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Conical – Cylindrical Gear
Step: Double-Step
Customization:
Available

|

Customized Request

helical gearbox

Performance of Helical Gearboxes in Applications Requiring Frequent Starts and Stops

Helical gearboxes are well-suited for applications that involve frequent starts and stops due to their design characteristics. Here’s how they fare in such scenarios:

  • Smooth Engagement: Helical gears offer gradual and smooth engagement, which reduces shock loads during starts and stops. This feature helps minimize wear and stress on gear teeth and other components.
  • Noise and Vibration Reduction: The helical tooth arrangement results in less noise and vibration compared to other gear types. This is especially beneficial in applications where noise reduction is a priority.
  • Efficient Power Transmission: Helical gears efficiently transmit power even during frequent starts and stops. The gradual contact between gear teeth and the larger tooth engagement area contribute to efficient power transfer.
  • Less Backlash: Helical gearboxes typically have lower backlash compared to other gear types. This means there’s less play between gear teeth, resulting in more accurate and consistent motion control.
  • Heat Dissipation: The helical tooth design distributes loads and heat more evenly, which can help dissipate heat generated during frequent starts and stops.
  • Longevity: The reduced wear and improved load distribution contribute to the longevity of helical gearboxes, making them suitable for applications requiring frequent cyclic motion.

In summary, helical gearboxes perform well in applications involving frequent starts and stops. Their smooth engagement, reduced noise and vibration, efficient power transmission, and durability make them a reliable choice for industries that demand precise and controlled motion despite frequent changes in speed and direction.

helical gearbox

Materials Used in Manufacturing Helical Gears

Helical gears are commonly manufactured using a variety of materials to meet specific requirements for strength, durability, wear resistance, and other mechanical properties. Some of the materials commonly used for manufacturing helical gears include:

  • Steel: Various types of steel, such as carbon steel, alloy steel, and stainless steel, are frequently used due to their high strength, durability, and wear resistance. They are suitable for a wide range of applications and provide excellent performance.
  • Cast Iron: Cast iron gears are known for their cost-effectiveness and good wear resistance. They are often used in applications where heavy loads and moderate speeds are involved.
  • Brass: Brass gears are chosen for applications that require quiet operation and low-speed applications. They offer good corrosion resistance and are commonly used in smaller machinery.
  • Bronze: Bronze gears are valued for their excellent wear resistance and compatibility with lubricants. They are often used in heavy-duty applications and situations where high loads are encountered.
  • Plastics and Polymers: Certain plastic materials, such as nylon and acetal, are used for gears that require low noise levels and resistance to chemicals and corrosion. They are suitable for applications where lightweight components are essential.
  • Aluminum: Aluminum gears are lightweight and corrosion-resistant, making them suitable for applications where weight reduction and corrosion resistance are priorities.

The choice of material depends on factors such as the application’s load, speed, environment, and desired performance characteristics. Manufacturers select materials that best align with the specific requirements of the helical gear system, ensuring optimal function and longevity.

helical gearbox

Efficiency of Helical Gearboxes Compared to Other Gearbox Types

Helical gearboxes are known for their relatively high efficiency compared to some other gearbox types. Here’s a comparison of their efficiency with other common gearbox configurations:

  • Straight-Cut (Spur) Gearboxes: Helical gearboxes are generally more efficient than straight-cut gearboxes. The helical tooth design allows for smoother engagement and better load distribution, reducing friction and energy losses. This results in higher overall efficiency for helical gearboxes.
  • Bevel Gearboxes: Bevel gearboxes, which are commonly used for right-angle applications, typically have lower efficiency compared to helical gearboxes. The bevel gear design involves sliding contact between gear teeth, leading to higher friction and energy losses.
  • Worm Gearboxes: Helical gearboxes are generally more efficient than worm gearboxes. Worm gearboxes have a relatively lower efficiency due to the sliding action between the worm and the gear, resulting in higher friction and heat generation.
  • Planetary Gearboxes: Planetary gearboxes can offer comparable efficiency to helical gearboxes, especially when well-designed. However, planetary gearboxes can have variations in efficiency depending on factors such as the number of planet gears and gear arrangements.

While helical gearboxes tend to offer good efficiency, it’s important to note that efficiency can also be influenced by factors such as gear quality, lubrication, operating conditions, and maintenance practices. Consulting with gearbox manufacturers and considering specific application requirements is crucial when determining the most efficient gearbox solution.

China Good quality High Torque Zplx142 Planetary Gearbox Two Stage Reduction   car gearbox	China Good quality High Torque Zplx142 Planetary Gearbox Two Stage Reduction   car gearbox
editor by CX 2024-04-25

China factory Two Stage Helical Gearbox Motor Parallel Shaft Bevel Reducer Speed Spiral 90 Degree Right Angle Straight Supplier Competitive Price Stainless Steel Gearbox car gearbox

Product Description

Two Stage Helical Gearbox Motor Parallel Shaft Bevel Reducer Speed Spiral 90 Degree Right Angle Straight Supplier Competitive Price Stainless Steel Gearbox

Application of Helical Gearbox

Helical gearboxes are used in a wide variety of applications, including:

  • Automotive: Helical gearboxes are used in a variety of automotive applications, including transmissions, differentials, and steering systems. They help to transmit power smoothly and efficiently, which improves the overall performance of the vehicle.
  • Machinery: Helical gearboxes are used in a variety of machinery applications, including conveyor belts, elevators, and cranes. They help to transmit power smoothly and efficiently, which improves the overall performance of the equipment.
  • Aerospace: Helical gearboxes are used in a variety of aerospace applications, including aircraft engines, landing gear, and control surfaces. They help to transmit power smoothly and efficiently, which improves the overall performance of the aircraft.
  • Construction: Helical gearboxes are used in a variety of construction applications, including excavators, bulldozers, and cranes. They help to transmit power smoothly and efficiently, which improves the overall performance of the equipment.
  • Other: Helical gearboxes are also used in a variety of other applications, such as wind turbines, robotics, and medical devices. They help to transmit power smoothly and efficiently, which improves the overall performance of the system.

Helical gears are a type of gear that has teeth that are cut at an angle. This angle allows the teeth to engage each other gradually and smoothly, which reduces noise and vibration. Helical gears are often used in high-speed applications, such as in automotive differentials.

Helical gears are made of a variety of materials, including steel, cast iron, and aluminum. The material of the gear will depend on the specific application and the environment in which it will be used.

Helical gears are available in a variety of sizes and styles to accommodate a wide range of applications. They are also available in a variety of ratios, which allows them to be used in a variety of applications.

Here are some of the advantages of using helical gears:

  • Reduced noise and vibration: Helical gears help to reduce noise and vibration, which can improve the overall working environment.
  • Increased efficiency: Helical gears are more efficient than straight gears, which can help to improve the overall performance of a system.
  • Increased durability: Helical gears are made of durable materials that can withstand a lot of wear and tear.
  • Cost-effectiveness: Helical gears are a cost-effective way to improve the performance and durability of a system.

Overall, helical gears are a versatile and reliable component that can be used in a wide variety of applications. They offer a number of advantages, including reduced noise and vibration, increased efficiency, increased durability, and cost-effectiveness.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Three-Ring
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Stepless
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Key Factors for Selecting a Helical Gearbox

Choosing the right helical gearbox for an application involves considering several key factors:

  • Load and Torque: Evaluate the maximum load and torque requirements to ensure the gearbox can handle the application’s demands.
  • Speed Range: Determine the required speed range and ensure the gearbox’s gear ratios can accommodate it.
  • Efficiency: Helical gearboxes are known for their high efficiency. Select a gearbox with efficiency ratings that meet your application’s needs.
  • Space Constraints: Consider the available installation space and choose a compact gearbox that fits within the available dimensions.
  • Mounting Position: The mounting position affects lubrication, cooling, and overall performance. Ensure the gearbox is suitable for the desired mounting orientation.
  • Service Life: Choose a gearbox with a service life that matches your application’s expected lifespan.
  • Backlash: Evaluate the allowable backlash, which affects precision and positioning accuracy.
  • Noise and Vibration: Assess the acceptable noise and vibration levels and choose a gearbox with suitable characteristics.
  • Environmental Conditions: Consider factors like temperature, humidity, and dust levels to ensure the gearbox can operate reliably in the application environment.
  • Maintenance: Factor in maintenance requirements and choose a gearbox with manageable maintenance needs.
  • Cost: Balance performance with budget constraints to find a gearbox that offers the best value for your application.

By carefully evaluating these factors, you can select a helical gearbox that optimally meets your application’s requirements and ensures efficient and reliable operation.

helical gearbox

Relationship Between Helix Angle and Load Capacity in Helical Gears

The helix angle of helical gears plays a significant role in determining their load-carrying capacity and overall performance. Here’s the relationship between the helix angle and load capacity:

1. Load Distribution: The helix angle affects how the load is distributed along the gear teeth. A larger helix angle results in a more gradual tooth engagement, allowing for smoother load sharing across multiple teeth. This improves the gear’s ability to handle higher loads.

2. Contact Ratio: The contact ratio, which indicates the number of teeth in contact at any given time, increases with a larger helix angle. A higher contact ratio helps distribute the load over a larger area of the gear teeth, enhancing load-carrying capacity.

3. Tooth Meshing: The helix angle affects how the teeth mesh with each other. A higher helix angle promotes gradual and smoother meshing, reducing the concentration of stress on individual teeth. This results in improved resistance to wear and fatigue.

4. Axial Thrust: Helical gears produce axial thrust due to their helical nature. This thrust can affect the gear’s ability to handle radial loads. Proper consideration of the helix angle can help manage axial thrust and prevent overloading.

5. Lubrication: The helix angle affects the lubrication conditions between gear teeth. A larger helix angle may allow better oil flow and lubrication, reducing friction and wear, thereby enhancing load capacity.

6. Noise and Vibration: The helix angle also influences noise and vibration levels in helical gears. Optimal helix angle selection can minimize noise and vibration, contributing to smoother operation and prolonged gear life.

Optimal Helix Angle Selection: While a larger helix angle generally increases load capacity, it’s important to strike a balance. Extremely large helix angles can lead to reduced tooth strength and efficiency. Engineers consider factors like application requirements, tooth strength, and noise considerations when selecting the optimal helix angle for a specific gear design.

The relationship between the helix angle and load capacity underscores the importance of proper gear design to ensure optimal performance, durability, and reliability in various applications.

helical gearbox

Limitations and Disadvantages of Helical Gear Systems

While helical gear systems offer numerous advantages, they also come with certain limitations and disadvantages:

  • Axial Thrust: Helical gears generate axial thrust due to the helix angle of the teeth. This thrust can cause additional load on bearings and may require additional measures to counteract.
  • Complex Manufacturing: The manufacturing process for helical gears is more complex than that of straight-toothed gears, which can lead to higher production costs.
  • Axial Length: Helical gears require more axial space compared to spur gears with the same gear ratio. This can be a limitation in applications with space constraints.
  • Sliding Contact: Helical gears have sliding contact between their teeth, which can result in higher friction and more heat generation compared to rolling contact gears.
  • Efficiency: Although helical gears are generally efficient, their efficiency can be slightly lower than that of some other gear types, especially at high speeds.
  • Complexity in Gearbox Design: The inclination of helical gear teeth introduces additional complexity in gearbox design and alignment.
  • Reverse Thrust: In some cases, reverse thrust can occur when helical gears are subjected to high axial loads, leading to undesirable effects.

It’s important to consider these limitations and disadvantages when selecting gear systems for specific applications. Despite these challenges, helical gears remain a popular choice in various industries due to their benefits and overall performance characteristics.

China factory Two Stage Helical Gearbox Motor Parallel Shaft Bevel Reducer Speed Spiral 90 Degree Right Angle Straight Supplier Competitive Price Stainless Steel Gearbox   car gearbox	China factory Two Stage Helical Gearbox Motor Parallel Shaft Bevel Reducer Speed Spiral 90 Degree Right Angle Straight Supplier Competitive Price Stainless Steel Gearbox   car gearbox
editor by CX 2023-09-04

China wholesaler Helical Gearbox Inline Helical Gear Box Bevel Worm Reduction Unit Crane Duty Shaft Mounted Parallel Manufacturers Industrial Coaxial Two Stage Helical Gearbox automatic gearbox

Product Description

Helical Gearbox inline helical gear box bevel worm reduction Shaft Mounted parallel manufacturers industrial coaxial 2 stage unit crane duty Helical Gearbox

helical concentric gearbox speed reducer decelerator has the features of high versatility,good combination and heavy loading capability, along with other merits such as easy to attain various transmission ratios, high efficiency, low vibrationand high permissible axis radial load. This series can not only be combined with various kinds of reducers and variators and meet the requirements, but also beadvantage of localization of related transmission equipment.
1) Output speed: 0.6~1,571rpm
2) Output torque: up to 18,000N.m
3) Motor power: 0.18~160kW
4) Mounted form: foot-mounted and flange-mounted mounting

Product Name SLR Series  Rigid Tooth  helical reducer 
Gear Material 20CrMnTi 
Case Material HT250
Shaft Material  20CrMnTi
Gear Processing Grinding finish by HOFLER Grinding Machines
Color  Customized
Noise Test Bellow 65dB

Application: Motor, Electric Cars, Motorcycle, Machinery, Agricultural Machinery
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Step:
Type:
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Differences Between Helical Gearboxes and Spur Gearboxes

Helical gearboxes and spur gearboxes are two common types of gearboxes used in various applications. Here are the key differences between them:

  • Tooth Design: The main difference between helical and spur gearboxes lies in their tooth design. Helical gearboxes feature helical teeth that are cut at an angle to the gear axis, while spur gearboxes have straight-cut teeth that run parallel to the gear axis.
  • Engagement: Helical gearboxes offer a gradual and smooth engagement of teeth due to their helical tooth design. This results in reduced noise and vibration compared to spur gearboxes, which can have more abrupt and noisy tooth engagement.
  • Load Distribution: Helical gearboxes have a higher contact ratio between teeth at any given time, which leads to better load distribution across the gear teeth. Spur gearboxes, on the other hand, have fewer teeth in contact at a time, potentially leading to higher stress on individual teeth.
  • Efficiency: Helical gearboxes tend to be more efficient than spur gearboxes due to the helical tooth design, which reduces friction and energy losses during gear meshing. The gradual engagement of helical teeth contributes to this higher efficiency.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to spur gearboxes. The helical tooth design and smooth engagement help in reduhelical gearbox

    Helical Gearboxes and Energy Efficiency

    Helical gearboxes play a significant role in enhancing energy efficiency in various industrial processes. Their design and operating characteristics contribute to improved efficiency and reduced energy consumption. Here’s how helical gearboxes achieve energy efficiency:

    • Helical Gear Meshing: Helical gears have inclined teeth that engage gradually, resulting in smoother and quieter meshing compared to other gear types. This smoother engagement reduces impact and friction losses, leading to higher efficiency and lower energy consumption.
    • Load Distribution: Helical gears distribute the load across multiple teeth due to their helix angle. This even load distribution minimizes stress concentrations and prevents premature wear, ensuring efficient power transmission and reducing the need for frequent maintenance.
    • Efficient Power Transmission: The inclined tooth profile of helical gears allows for more teeth to be in contact at any given time. This increased contact area improves power transmission efficiency by reducing sliding friction and minimizing energy losses.
    • Reduced Vibration: The helical tooth engagement minimizes vibration and noise levels, which can be particularly advantageous in applications that require precise and stable operation. Reduced vibration translates to lower energy losses and increased overall efficiency.
    • Optimized Gear Design: Engineers can fine-tune helical gear designs by adjusting parameters such as helix angle, number of teeth, and gear materials. This optimization process helps tailor the gearbox for specific applications, ensuring optimal efficiency and minimal energy wastage.
    • Lubrication and Cooling: Proper lubrication and cooling strategies are crucial for maintaining efficiency. Helical gears benefit from efficient lubrication due to their continuous tooth engagement, which helps reduce friction and wear, further enhancing energy efficiency.
    • Advanced Manufacturing: Modern manufacturing techniques enable precise production of helical gears, ensuring tight tolerances and accurate tooth profiles. This manufacturing precision contributes to minimal energy losses during gear operation.

    Overall, helical gearboxes excel in energy efficiency by combining smoother tooth engagement, even load distribution, reduced vibration, and optimized designs. Their ability to transmit power efficiently and reliably makes them a preferred choice for industrial processes where energy conservation is a priority.

    cing the impact of gear meshing on overall noise levels.

  • Applications: Helical gearboxes are commonly used in applications that require higher torque and smoother operation, such as heavy machinery, automotive transmissions, and industrial equipment. Spur gearboxes helical gearbox

    Key Factors for Selecting a Helical Gearbox

    Choosing the right helical gearbox for an application involves considering several key factors:

    • Load and Torque: Evaluate the maximum load and torque requirements to ensure the gearbox can handle the application’s demands.
    • Speed Range: Determine the required speed range and ensure the gearbox’s gear ratios can accommodate it.
    • Efficiency: Helical gearboxes are known for their high efficiency. Select a gearbox with efficiency ratings that meet your application’s needs.
    • Space Constraints: Consider the available installation space and choose a compact gearbox that fits within the available dimensions.
    • Mounting Position: The mounting position affects lubrication, cooling, and overall performance. Ensure the gearbox is suitable for the desired mounting orientation.
    • Service Life: Choose a gearbox with a service life that matches your application’s expected lifespan.
    • Backlash: Evaluate the allowable backlash, which affects precision and positioning accuracy.
    • Noise and Vibration: Assess the acceptable noise and vibration levels and choose a gearbox with suitable characteristics.
    • Environmental Conditions: Consider factors like temperature, humidity, and dust levels to ensure the gearbox can operate reliably in the application environment.
    • Maintenance: Factor in maintenance requirements and choose a gearbox with manageable maintenance needs.
    • Cost: Balance performance with budget constraints to find a gearbox that offers the best value for your application.

    By carefully evaluating these factors, you can select a helical gearbox that optimally meets your application’s requirements and ensures efficient and reliable operation.

    are suitable for applications with moderate loads and where noise considerations are not critical.

Overall, helical gearboxes offer advantages in terms of efficiency, load distribution, and noise reduction compared to spur gearboxes. However, the choice between the two depends on specific application requirements and factors such as torque, speed, space constraints, and noise considerations.

China wholesaler Helical Gearbox Inline Helical Gear Box Bevel Worm Reduction Unit Crane Duty Shaft Mounted Parallel Manufacturers Industrial Coaxial Two Stage Helical Gearbox   automatic gearbox	China wholesaler Helical Gearbox Inline Helical Gear Box Bevel Worm Reduction Unit Crane Duty Shaft Mounted Parallel Manufacturers Industrial Coaxial Two Stage Helical Gearbox   automatic gearbox
editor by CX 2023-08-29