Tag Archives: transmission gear box

China Professional High Quality 1: 20 Ratio K Series Hardened Helical Bevel Gear Box Transmission best automatic gearbox

Product Description

Why Choose Us

Product Details

 

 

Type

Helical Bevel Gearbox / Reducer

Model

WK37~WK187

Mounting Position

Flange, hollow shaft, CZPT shaft

Efficiency

94%~98%(depends on the transmission stage)

Material

Housing: HT250 high strength cast iron

Gear: 20CrMnTi

Surface hardness of gears

HRC58~62

Input/output shaft material

40Cr

Machining precision of gears

Accurate grinding, 6 grade

Warranty

1 Year

Input Power

0.09kw,0.18kw,1.1KW,1.5KW,2.2KW,3KW,4KW,5.5KW,7.5KW,

11Kw and so on.

Usages

Industrial Machine: Food Stuff, Ceramics, CHEMICAL, Packing, Dyeing,

Wood working, Glass.

IEC Flange

IEC standard flange

Lubricant oil

Gear oil

 

Company Profile

Exhibition

Customized Service

Certificate&Honor

Customer Comments

FAQ

 

1. How to choose a gearbox which meets our requirement?
You can refer to our catalogue to choose the gearbox or we can help to choose when you provide
the technical information of required output torque, output speed and motor parameter etc.

2. What information shall we give before placing a purchase order?
a) Type of the gearbox, ratio, input and output type, input flange, mounting position, and motor information etc.
b) Housing color.
c) Purchase quantity.
d) Other special requirements.

3. What industries are your gearboxes being used?
Our gearboxes are widely used in the areas of textile, food processing, beverage, chemical industry,
escalator,automatic storage equipment, metallurgy, tabacco, environmental protection, logistics and etc.

4. Do you sell motors?
We have stable motor suppliers who have been cooperating with us for a long-time. They can provide motors
with high quality.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Function: Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Step: Three-Step
Samples:
US$ 200/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Precision and High-Accuracy Applications of Helical Gearboxes

Helical gearboxes are well-suited for precision and high-accuracy applications due to their unique design and performance characteristics:

  • Helical Gearing: The helical gears in these gearboxes offer smooth and continuous meshing, resulting in reduced backlash and improved positioning accuracy.
  • Efficiency: Helical gearboxes are known for their high efficiency, which minimizes energy losses and heat generation. This is crucial for maintaining precision in applications where even small deviations can have significant impacts.
  • Noise and Vibration: The helical gear tooth engagement helps in reducing noise and vibration levels, making them suitable for environments where quiet operation is required.
  • Load Distribution: Helical gears distribute load across multiple teeth, minimizing localized wear and extending the lifespan of the gearbox.
  • Smooth Motion: Helical gearboxes provide smoother motion transitions, which is crucial in precision applications where jerky or sudden movements are undesirable.
  • Positional Accuracy: The reduced backlash and improved meshing characteristics of helical gears contribute to higher positional accuracy, making these gearboxes ideal for applications such as CNC machines, robotics, and medical equipment.
  • Compact Design: Helical gearboxes can achieve high gear ratios in a relatively compact form factor, making them suitable for applications where space is limited.

Examples of precision applications where helical gearboxes are commonly used include CNC machining, robotics, semiconductor manufacturing, medical equipment, and metrology devices. The combination of efficiency, smooth operation, and accuracy makes helical gearboxes a preferred choice for achieving consistent and reliable performance in such applications.

helical gearbox

Handling Shock Loads and Sudden Changes in Torque in Helical Gearboxes

Helical gearboxes are designed to handle a range of operational conditions, including shock loads and sudden changes in torque. The helical design of the gears, which have slanted teeth that engage gradually, helps to distribute forces more evenly across the teeth compared to straight-cut gears. This design characteristic contributes to the gearbox’s ability to withstand sudden changes in torque and shock loads.

The gradual engagement of the helical teeth results in smoother and quieter operation, reducing the impact of abrupt torque changes. The slanted teeth also allow for more gradual transmission of force, which helps in dampening vibrations and minimizing stress concentrations that can occur in high-impact situations.

However, while helical gears are better suited for shock loads compared to straight-cut gears, it’s important to note that extreme shock loads or sudden torque changes can still impact the gearbox’s components over time. Manufacturers often take factors such as application requirements, load profiles, and anticipated shock loads into consideration when designing helical gearboxes to ensure reliable and durable performance.

Additionally, using appropriate lubrication and maintenance practices can further enhance the gearbox’s ability to handle shock loads and sudden torque changes. Regular inspection and timely maintenance help identify and address potential issues before they lead to component failure.

helical gearbox

Helical Gearbox: Overview and Working Mechanism

A helical gearbox is a type of mechanical device used to transmit power and motion between rotating shafts. It employs helical gears, which are cylindrical gears with teeth that are cut at an angle to the gear axis. This design feature gives helical gearboxes their distinctive helical shape and provides several advantages in terms of efficiency, smoothness, and load-bearing capabilities.

The working mechanism of a helical gearbox involves the interaction of helical gears, which mesh together to transmit torque and motion. Here’s how it works:

  1. Gear Tooth Engagement: When power is applied to the input shaft of the gearbox, the helical gear on the input shaft meshes with the helical gear on the output shaft.
  2. Helical Angle: The helical angle of the gear teeth causes a gradual engagement between the teeth, resulting in a smooth and quiet meshing process compared to straight-cut gears.
  3. Torque Transfer: As the input gear rotates, it transfers rotational force (torque) to the output gear through the meshing of their helical teeth.
  4. Direction of Rotation: Depending on the arrangement of the helical gears, the output shaft’s direction of rotation can be the same as or opposite to that of the input shaft.
  5. Load Distribution: The helical design allows for multiple teeth to be engaged at any given moment, distributing the load more evenly across the gears. This results in higher load-carrying capacity and reduced wear on gear teeth.
  6. Efficiency: Helical gearboxes are known for their high efficiency due to the gradual tooth engagement and larger contact area, resulting in minimal energy loss as compared to other gear types.

Helical gearboxes find applications in various industries where smooth operation, high efficiency, and compact design are important. They are commonly used in machinery, conveyors, automotive transmissions, industrial equipment, and more.

China Professional High Quality 1: 20 Ratio K Series Hardened Helical Bevel Gear Box Transmission   best automatic gearbox	China Professional High Quality 1: 20 Ratio K Series Hardened Helical Bevel Gear Box Transmission   best automatic gearbox
editor by CX 2024-04-15

China Standard High Efficiency S Series Helical Worm Reductor Motor Power Transmission Gear Box car gearbox

Product Description

S series helical-worm gear box
 

Characteristics:
1. Combination of helical-worm gears, small in size, light weight, compact structure, large reduction ratio and strong bearing capacity;
2.  Bump gearbox body surface has a cooling effect, low temperature rise and low noise;
3.  Good sealing performance and strong working environment adaptability;
4.  High drive accuracy, particularly adapted to the frequent starts occasions;
5. Input types:  motor directly connected, the motor belt join or input shaft coupling flange input.

S series helical-worm gear box Specification:
Output speed: 0.1 ~ 433 r/ min
Output torque: acuities were 4200 n. m
Motor power: 0.18 ~ 22 kw

link code and form:S – shaft extension type connection
SA – shaft couplingSF -flange, shaft extension type installation
SAF – shaft, flange installation

S series helical-worm gear box Application:
coal equipment, ferrous metallurgy, mining machinery, paper machinery, rubber and plastics, petrochemical, lifting transportation, drink beer, food packaging, pharmacy and leather, textile dyeing and printing, environmental protection equipment, light industry machinery and so on.

More pictures:

Packing & Shipping

About us:

HangZhou CZPT machinery technology Co., Ltd is an industry transmission solutions manufacuturer and service provider.

We offer 1 stop solution for power transmission products for different factories, such as chemicals, energy, material handling, environmental, extraction, pulp and paper, steel and metal, food and beverage, and construction industries.

We supply: Customised gears, Small gearmotors, Industrial gearboxes, Motors, Brand product sourcing.

Our industrial Gear, Gearbox, gearmotor and motor are sold to more than 30 countries. High quality, good price, in time response and sincere service are our value and promises. We aim at making happy cooperation with our customers, bring them reliable and comfortable service. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Customization:
Available

|

Customized Request

helical gearbox

Types of Helical Gear Arrangements

Yes, there are different types of helical gear arrangements available to suit various applications and requirements. Some of the common helical gear arrangements include:

Parallel Shaft Arrangement: In this arrangement, the axes of the driving and driven shafts are parallel to each other. It is the most straightforward configuration and is often used in applications where space is not a constraint, and the gearboxes can be placed side by side.

Right-Angle Shaft Arrangement: In a right-angle arrangement, the driving and driven shafts are positioned at a 90-degree angle to each other. This arrangement is space-saving and is commonly used in applications where the layout requires a change in direction of the power transmission.

Double Helical Gear Arrangement (Herringbone Gears): Double helical gears consist of two sets of helical teeth facing each other. This arrangement helps to cancel out axial forces and reduces the net thrust load on bearings. It is often used in heavy-duty applications to minimize wear and vibration.

Crossed Helical Gear Arrangement (Screw Gears): In this configuration, the axes of the driving and driven shafts are neither parallel nor intersecting. It is suitable for applications requiring non-parallel and non-intersecting shafts.

The choice of helical gear arrangement depends on factors such as available space, power transmission requirements, and the desired layout of the machinery or equipment. Each arrangement has its advantages and disadvantages, and selecting the appropriate one is crucial for achieving optimal performance and efficiency.

helical gearbox

Safety Precautions for Operating Machinery with Helical Gear Systems

When operating machinery equipped with helical gear systems, it’s crucial to prioritize safety to prevent accidents and ensure the well-being of operators and equipment. Here are the key safety precautions to consider:

  • Training and Familiarity: Operators should receive proper training on the equipment’s operation, including the helical gear system. They should be familiar with the controls, emergency procedures, and potential hazards.
  • Protective Gear: Operators should wear appropriate personal protective equipment (PPE), such as gloves, safety glasses, helmets, and ear protection, depending on the application’s requirements.
  • Lockout/Tagout: Before performing maintenance or repairs, follow lockout/tagout procedures to isolate the machinery from its power source and prevent accidental startup.
  • Regular Inspections: Conduct routine inspections of the helical gear system and other machinery components to identify signs of wear, damage, or malfunction. Address any issues promptly to avoid unsafe conditions.
  • Proper Lubrication: Ensure the helical gear system is adequately lubricated according to manufacturer recommendations. Proper lubrication reduces friction, wear, and heat buildup, enhancing both performance and safety.
  • Emergency Stop: Machinery should be equipped with clearly marked emergency stop buttons or switches that operators can use to halt operations immediately in case of an emergency.
  • Cleaning and Housekeeping: Maintain a clean work environment by removing debris, oil spills, and other potential hazards. Good housekeeping minimizes slip and trip hazards and promotes safe operation.
  • Load Capacity: Adhere to the recommended load capacities specified by the manufacturer for both the helical gear system and the machinery as a whole. Overloading can lead to accelerated wear and potential failures.
  • Avoid Loose Clothing: Operators should avoid wearing loose clothing, jewelry, or other items that could become entangled in the machinery, leading to accidents.
  • Safe Working Distances: Establish safe working distances from moving parts of the machinery, including the helical gear system, to prevent accidental contact and ensure operator safety.
  • Regular Maintenance: Follow the manufacturer’s maintenance schedule and guidelines for the helical gear system. Regular maintenance reduces the risk of unexpected failures and promotes safe and reliable operation.

Prioritizing safety when operating machinery with helical gear systems is essential to prevent accidents, protect operators, and maintain efficient operations. Following these precautions and promoting a safety-conscious culture can significantly contribute to a safe working environment.

helical gearbox

Handling High Torque and Heavy Loads in Helical Gearboxes

Helical gearboxes are well-suited for handling high torque and heavy loads due to their unique design and meshing characteristics:

  • Helical Teeth: The helical shape of the gear teeth allows for gradual and continuous contact between the teeth during meshing. This results in smoother load distribution and reduced impact forces, making helical gears capable of handling heavy loads.
  • Multiple Tooth Contact: Helical gears have multiple teeth in contact at any given time, spreading the load over a larger area of gear teeth. This helps to distribute the load evenly and prevent localized wear and stress concentrations.
  • Increased Tooth Strength: The inclined orientation of helical gear teeth increases the tooth width, leading to greater tooth strength and improved load-carrying capacity.
  • Bearings and Shaft Design: The gearbox housing is designed to support heavy loads and provide proper alignment for the shafts and bearings. High-quality bearings and shafts help distribute the load and reduce wear.
  • Lubrication: Adequate lubrication is crucial to minimize friction and heat generation between gear teeth. Proper lubrication also helps to dissipate heat generated by the heavy loads.
  • Material Selection: High-strength materials with good wear resistance properties are chosen for helical gears to ensure they can withstand the demands of heavy loads.

Overall, the gradual engagement of helical gear teeth and their ability to handle multiple tooth contact positions them as a reliable choice for applications that require high torque and can handle heavy loads. Engineers carefully design helical gearboxes to ensure they can withstand the stresses imposed by the application’s specific requirements.

China Standard High Efficiency S Series Helical Worm Reductor Motor Power Transmission Gear Box   car gearbox	China Standard High Efficiency S Series Helical Worm Reductor Motor Power Transmission Gear Box   car gearbox
editor by CX 2024-04-03

China high quality S Series CZPT Shaft Helical Worm Gearbox Tractor Pto Multiplier Gearbox 11kw Gearbox Marine Transmission Gear Box wholesaler

Product Description

Detailed Photos

 

Features of S series reducer

The same model can be equipped with motors of various powers. It is easy to realize the combination and connection between various models.
The transmission efficiency is high, and the single reducer efficiency is up to 96%. three
The transmission ratio is subdivided and the range is wide. The combined model can form a large transmission ratio and low output speed.
The installation forms are various, and can be installed with any foot, B5 flange or B4 flange. The foot mounting reducer has 2 machined foot mounting planes.
Helical gear and worm gear combination, compact structure, large reduction ratio.
Installation mode: foot installation, hollow shaft installation, flange installation, torque arm installation, small flange installation.
Input mode: motor direct connection, motor belt connection or input shaft, connection flange input.
Average efficiency: reduction ratio 7.5-69.39 is 77%; 70.43-288 is 62%; The S/R combination is 57%.

S57 SF57 SA57 SAF57 S series helical worm gear box speed reducer 0.18kw 0.25kw 0.37kw 0.55kw 0.75kw 1.1kw 1.5kw 2.2kw 3kw, max. permissible torque up to 300Nm, transmission ratios from 10.78 to 196.21. Mounting mode: foot mounted, flange mounted, short flange mounted, torque arm mounted. Output shaft: CZPT shaft, hollow shaft (with key, with shrink disc and with involute spline).

Product Parameters

 


 

Company Profile

 

Certifications

 

Packaging & Shipping

 

FAQ

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Expansion
Gear Shape: Bevel Gear
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Comparison of Helical Gearboxes and Bevel Gearboxes

Helical gearboxes and bevel gearboxes are both widely used for power transmission in various industrial applications. Here’s a comparison of their performance:

  • Gear Meshing: Helical gearboxes use helical gears with inclined teeth that gradually engage, resulting in smoother and quieter operation compared to the more abrupt engagement of straight-cut bevel gears.
  • Efficiency: Helical gearboxes generally offer higher efficiency due to their helical gear design, which distributes loads evenly across the teeth. Bevel gearboxes can have slightly lower efficiency due to the sliding action of gear teeth during engagement.
  • Load Capacity: Helical gearboxes can handle higher loads and torque due to the larger contact area of the gear teeth. Bevel gearboxes are suitable for moderate loads and applications where the direction of power transmission needs to be changed.
  • Space Efficiency: Bevel gearboxes are often more compact and suitable for applications where space is limited and a change in direction is required. Helical gearboxes may require more space due to the parallel shaft arrangement.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to straight-cut bevel gearboxes. Bevel gearboxes can be noisier, especially at higher speeds.
  • Application: Helical gearboxes are commonly used in applications requiring smooth and efficient power transmission, such as conveyors, pumps, and mixers. Bevel gearboxes are preferred for applications where changes in direction are necessary, such as in automotive differentials and printing presses.

Ultimately, the choice between helical and bevel gearboxes depends on the specific requirements of the application, including load capacity, space constraints, efficiency goals, and the need for directional changes in power transmission.

helical gearbox

Can Helical Gearboxes Be Retrofitted into Existing Machinery Designs?

Yes, helical gearboxes can often be retrofitted into existing machinery designs, providing an opportunity to upgrade the performance, efficiency, and reliability of older equipment. Here are the key points to consider when retrofitting helical gearboxes:

1. Compatibility: Before proceeding with a retrofit, it’s essential to ensure that the new helical gearbox is compatible with the existing machinery in terms of size, mounting, and shaft connections. Proper measurements and analysis are necessary to avoid any misalignment or fitment issues.

2. Space Considerations: Helical gearboxes may have a different physical profile compared to the original gearboxes. Engineers need to assess the available space in the machinery and confirm that the new gearbox will fit without major modifications.

3. Shaft Alignment: Proper shaft alignment is crucial to ensure smooth and efficient operation. During the retrofit, it’s important to align the new helical gearbox with other components in the system to prevent premature wear, noise, and vibration.

4. Power and Torque Ratings: The power and torque ratings of the helical gearbox should match or exceed the requirements of the machinery. This ensures that the new gearbox can handle the loads and stresses that the machinery may encounter.

5. Performance Improvements: Retrofitting with helical gearboxes can lead to improved efficiency, reduced noise, and smoother operation. These benefits can positively impact the overall performance and lifespan of the machinery.

6. Engineering Expertise: Retrofitting involves careful planning, engineering analysis, and implementation. Working with experienced engineers or gearbox specialists is advisable to ensure a successful retrofit without compromising the integrity of the machinery.

7. Cost-Benefit Analysis: Assessing the costs of the retrofit, including the cost of the new gearbox, installation, downtime, and potential modifications, is essential. Comparing these costs to the anticipated benefits of improved performance and efficiency will help make an informed decision.

8. Maintenance Considerations: Retrofitting may also impact maintenance practices. It’s important to understand any changes in lubrication requirements, inspection intervals, and servicing needs that come with the new gearbox.

Conclusion: Retrofitting helical gearboxes into existing machinery designs can be a cost-effective way to enhance the performance and extend the lifespan of equipment. However, careful planning, engineering analysis, and professional expertise are crucial to ensure a successful retrofit that delivers the desired improvements without causing unforeseen issues.

helical gearbox

Efficiency of Helical Gearboxes Compared to Other Gearbox Types

Helical gearboxes are known for their relatively high efficiency compared to some other gearbox types. Here’s a comparison of their efficiency with other common gearbox configurations:

  • Straight-Cut (Spur) Gearboxes: Helical gearboxes are generally more efficient than straight-cut gearboxes. The helical tooth design allows for smoother engagement and better load distribution, reducing friction and energy losses. This results in higher overall efficiency for helical gearboxes.
  • Bevel Gearboxes: Bevel gearboxes, which are commonly used for right-angle applications, typically have lower efficiency compared to helical gearboxes. The bevel gear design involves sliding contact between gear teeth, leading to higher friction and energy losses.
  • Worm Gearboxes: Helical gearboxes are generally more efficient than worm gearboxes. Worm gearboxes have a relatively lower efficiency due to the sliding action between the worm and the gear, resulting in higher friction and heat generation.
  • Planetary Gearboxes: Planetary gearboxes can offer comparable efficiency to helical gearboxes, especially when well-designed. However, planetary gearboxes can have variations in efficiency depending on factors such as the number of planet gears and gear arrangements.

While helical gearboxes tend to offer good efficiency, it’s important to note that efficiency can also be influenced by factors such as gear quality, lubrication, operating conditions, and maintenance practices. Consulting with gearbox manufacturers and considering specific application requirements is crucial when determining the most efficient gearbox solution.

China high quality S Series CZPT Shaft Helical Worm Gearbox Tractor Pto Multiplier Gearbox 11kw Gearbox Marine Transmission Gear Box   wholesaler China high quality S Series CZPT Shaft Helical Worm Gearbox Tractor Pto Multiplier Gearbox 11kw Gearbox Marine Transmission Gear Box   wholesaler
editor by CX 2024-03-30

China Good quality Modular Gear Speed Reduction Hypoid Helical Transmission Gear Box gearbox assembly

Product Description

Product Description

KPM-KPB series helical-hypoid gearboxes are the new-generation product with a compromise of advanced technology both at home and abroad.This product is widely used in textile, foodstuff, beverage,tobacco, logistics industrial fields,etc.
Main Features:
(1) Driven by hypoid gears, which has big ratios.
(2) Large output torque, high efficiency(up to 92%), energy saving and environmental protection.
(3) High quality aluminum alloy housing, light in weight and non-rusting.
(4) Smooth in running and low in noise, and can work long time in dreadful conditions.
(5) Good-looking appearance, durable service life and small volume.
(6) Suitable for all round installation, wide application and easy use.
(7) KPM series can replace NMRV worm gearbox; KPB series can replace CZPT W series worm gearbox;
(8) Modular and multi-structure can meet the demands of various conditions.
 Main Material:
(1) Housing: aluminum alloy 
(2) Gear wheel: 20CrMnTiH1,carbonize & quencher heat treatment make the hardness of gears surface up to 56-62 HRC, retain carburization layers thickness between 0.3 and 0.5mm after precise grinding.

Detailed Photos

Product Parameters

Model Information:

GEARBOX SELECTING TABLES    
KPM50..           n1=1400r/min       160Nm    
                         
Model i i n2 M2max Fr2 63B5 71B5/B14 80B5/B14 90B5/B14    
nominal actual [r/min] [Nm] [N]    
3 Stage    
KPM50C   300 294.05 4.8 130  4100   N/A N/A N/A    
KPM50C   250 244.29 5.8 130  4100   N/A N/A N/A    
KPM50C   200 200.44 7.0  130  4100   N/A N/A N/A    
KPM50C   150 146.67 9.6 160  4000   N/A N/A N/A    
KPM50C   125 120.34 12 160  3770     N/A N/A    
KPM50C   100 101.04 14 160  3560     N/A N/A    
KPM50C   75 74.62 19 160  3220     N/A N/A    
KPM50C   60 62.36 23 160  3030     N/A N/A    
KPM50C   50 52.36 27 160  2860     N/A N/A    
2 Stage    
KPM50B   60 58.36 24 130  2960     N/A N/A    
KPM50B   50 48.86 29 130  2790       N/A    
KPM50B   40 40.09 35 130  2610       N/A    
KPM50B   30 29.33 48 160  2350       N/A    
KPM50B   25 24.07 59 160  2200            
KPM50B   20 20.21 70 160  2080            
KPM50B   15 14.92 94 160  1880            
KPM50B   12.5 12.47 113 160  1770            
KPM50B   10 10.47 134 160  1670            
KPM50B   7.5 7.73 182 160  1510            
                         
                         
KPM63..,KPB63..           n1=1400r/min       180Nm    
                         
Model i i n2 M2max Fr2 63B5 71B5/B14 80B5/B14 90B5/B14    
nominal actual [r/min] [Nm] [N]    
3 Stage    
KPM63C KPB63C 300 302.50  4.7 160  4800   N/A N/A N/A    
KPM63C KPB63C 250 243.57  5.8 160  4800   N/A N/A N/A    
KPM63C KPB63C 200 196.43  7.2  160  4800     N/A N/A    
KPM63C KPB63C 150 151.56  9.3 180  4650     N/A N/A    
KPM63C KPB63C 125 122.22  12 180  4330     N/A N/A    
KPM63C KPB63C 100 94.50  14 180  4070     N/A N/A    
KPM63C KPB63C 75 73.33  20 180  3650       N/A    
KPM63C KPB63C 60 63.33  23 180  3480       N/A    
KPM63C KPB63C 50 52.48  27 180  3270       N/A    
2 Stage    
KPM63B KPB63B 60 60.50  24 160  3430       N/A    
KPM63B KPB63B 50 48.71  29 160  3190            
KPM63B KPB63B 40 39.29  36 160  2970            
KPM63B KPB63B 30 30.31  47 180  2720            
KPM63B KPB63B 25 24.44  58 180  2530 N/A          
KPM63B KPB63B 20 18.90  70 180  2380 N/A          
KPM63B KPB63B 15 14.67  96 180  2130 N/A N/A        
KPM63B KPB63B 12.5 12.67  111 180  2030 N/A N/A        
KPM63B KPB63B 10 10.50  134 180  1910 N/A N/A        
KPM63B KPB63B 7.5 7.60  185 180  1710 N/A N/A        
                         
                         
KPM75..,KPB75..           n1=1400r/min           350Nm
                         
Model i i n2 M2max Fr2 63B5 71B5 80B5/B14 90B5/B14 100B5/B14 112B5/B14
nominal actual [r/min] [Nm] [N]
3 Stage
KPM75C KPB75C 300 297.21  4.8 300  6500     N/A N/A N/A N/A
KPM75C KPB75C 250 240.89  5.9 300  6500     N/A N/A N/A N/A
KPM75C KPB75C 200 200.66  7.0  300  6500     N/A N/A N/A N/A
KPM75C KPB75C 150 149.30  9.3 350  6500       N/A N/A N/A
KPM75C KPB75C 125 121.00  12 350  5980       N/A N/A N/A
KPM75C KPB75C 100 100.80  15 350  5520       N/A N/A N/A
KPM75C KPB75C 75 79.40  19 350  5040         N/A N/A
KPM75C KPB75C 60 62.43  23 350  4730 N/A       N/A N/A
KPM75C KPB75C 50 49.18  29 350  4370 N/A       N/A N/A
2 Stage
KPM75B KPB75B 60 59.44  24 300  4660 N/A       N/A N/A
KPM75B KPB75B 50 48.18  30 300  4340 N/A       N/A N/A
KPM75B KPB75B 40 40.13  35 300  4080 N/A         N/A
KPM75B KPB75B 30 29.86  47 350  3720 N/A N/A       N/A
KPM75B KPB75B 25 24.20  56 350  3500 N/A N/A        
KPM75B KPB75B 20 20.16  71 350  3230 N/A N/A        
KPM75B KPB75B 15 15.88  93 350  2950 N/A N/A        
KPM75B KPB75B 12.5 12.49  113 350  2770 N/A N/A N/A      
KPM75B KPB75B 10 9.84  143 350  2550 N/A N/A N/A      
KPM75B KPB75B 7.5 7.48  188 350  2330 N/A N/A N/A      
                         
                         
KPM90..,KPB86..           n1=1400r/min           500Nm
                         
Model i i n2 M2max Fr2 63B5 71B5 80B5/B14 90B5/B14 100B5/B14 112B5/B14
nominal actual [r/min] [Nm] [N]
3 Stage
KPM90C KPB86C 300 297.21  4.8 450  6500     N/A N/A N/A N/A
KPM90C KPB86C 250 240.89  5.9 450  6500       N/A N/A N/A
KPM90C KPB86C 200 200.66  7.0  450  6500       N/A N/A N/A
KPM90C KPB86C 150 151.20  9.3 500  6500       N/A N/A N/A
KPM90C KPB86C 125 125.95  12 500  5980       N/A N/A N/A
KPM90C KPB86C 100 99.22  15 500  5520 N/A       N/A N/A
KPM90C KPB86C 75 75.45  19 500  5040 N/A       N/A N/A
KPM90C KPB86C 60 62.43  23 500  4730 N/A       N/A N/A
KPM90C KPB86C 50 49.18  29 500  4370 N/A       N/A N/A
2 Stage
KPM90B KPB86B 60 59.44  24 450  5890 N/A         N/A
KPM90B KPB86B 50 48.18  30 450  5500 N/A         N/A
KPM90B KPB86B 40 40.13  35 450  5170 N/A N/A        
KPM90B KPB86B 30 30.24  47 500  4710 N/A N/A        
KPM90B KPB86B 25 25.19  56 500  4430 N/A N/A        
KPM90B KPB86B 20 19.84  71 500  4090 N/A N/A N/A      
KPM90B KPB86B 15 15.09  93 500  3730 N/A N/A N/A      
KPM90B KPB86B 12.5 12.49  113 500  3510 N/A N/A N/A      
KPM90B KPB86B 10 9.84  143 500  3240 N/A N/A N/A      
KPM90B KPB86B 7.5 7.48  188 500  2950 N/A N/A N/A      

Outline Dimension:

Company Profile

About our company:
We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.Our leading products is  full range of RV571-150 worm reducers , also supplied hypoid helical gearbox, PC units, UDL Variators and AC Motors.Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and Middle East and so on.Our aim is to develop and innovate on basis of high quality, and create a good reputation for reducers.

 Packing information:Plastic Bags+Cartons+Wooden Cases , or on request
We participate Germany Hannver Exhibition-ZheJiang PTC Fair-Turkey Win Eurasia

Logistics

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc.

FAQ

1.Q:Can you make as per customer drawing?
A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.
2.Q:What is your terms of payment ?
A: 30% deposit before production,balance T/T before delivery.
3.Q:Are you a trading company or manufacturer?
A:We are a manufacurer with advanced equipment and experienced workers.
4.Q:What’s your production capacity?
A:8000-9000 PCS/MONTH
5.Q:Free sample is available or not?
A:Yes, we can supply free sample if customer agree to pay for the courier cost
6.Q:Do you have any certificate?
A:Yes, we have CE certificate and SGS certificate report.

Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

 

 

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right-Angle
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Two Stage-Three Stage
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Using Helical Gearboxes for Speed Reduction and Speed Increase

Yes, helical gearboxes can be used for both speed reduction and speed increase in various applications. The design of helical gears allows them to transmit motion and power between non-parallel shafts while changing the rotational speed.

Speed Reduction: When the driving gear (pinion) has fewer teeth than the driven gear, the gear ratio leads to speed reduction. This is commonly used in applications where the input speed needs to be decreased while increasing the output torque. For example, helical gearboxes are often employed in conveyor systems to reduce the speed of the motor while maintaining sufficient torque to move heavy loads.

Speed Increase: Helical gearboxes can also achieve speed increase by having the driving gear (pinion) with more teeth than the driven gear. This configuration is less common but can be used to increase the output speed while sacrificing some torque. Speed increase applications are typically seen in scenarios where higher speeds are required, such as in certain types of machinery or industrial processes.

It’s important to note that while helical gearboxes can perform both speed reduction and speed increase, the specific gear ratios and configurations need to be carefully chosen to ensure efficient and reliable operation for the intended application.

helical gearbox

Considerations for Designing Helical Gearboxes for Heavy-Duty Applications

Designing helical gearboxes for heavy-duty applications requires careful consideration of various factors to ensure reliable and efficient operation under high loads and demanding conditions. Here are the key considerations:

  • Load Capacity: Heavy-duty applications involve substantial loads. The gearbox must be designed to handle these loads while preventing premature wear and failure. Calculations of the load distribution, contact stresses, and material strength are crucial.
  • Material Selection: High-strength and durable materials are essential for heavy-duty gearboxes. Alloy steels or special heat-treated materials are often chosen to provide the necessary strength and resistance to fatigue and wear.
  • Gear Tooth Design: Optimal gear tooth profiles, such as optimized helix angles and tooth modifications, contribute to smoother engagement and reduced stress concentrations. This enhances the gearbox’s ability to handle heavy loads without excessive wear.
  • Bearing Selection: Robust and high-capacity bearings are necessary to support the heavy loads and provide reliable shaft support. The bearings must be able to withstand both radial and axial forces generated during operation.
  • Lubrication: Adequate lubrication is critical for heavy-duty gearboxes. Lubricants with high load-carrying capacity and extreme pressure properties are chosen to ensure proper lubrication under heavy loads and to reduce friction and wear.
  • Heat Dissipation: Heavy-duty applications can generate significant heat due to friction and load. Efficient heat dissipation mechanisms, such as cooling fins or oil cooling, should be incorporated into the gearbox design to prevent overheating and thermal damage.
  • Sealing: Effective sealing is necessary to prevent contaminants from entering the gearbox and to retain lubricants. Seals must be capable of withstanding the conditions of the application, including high loads, vibrations, and potential exposure to harsh environments.
  • Efficiency: Although heavy-duty applications prioritize load capacity, achieving acceptable levels of efficiency is still important to minimize energy losses and heat generation. Proper gear tooth design and high-quality manufacturing contribute to better efficiency.
  • Structural Integrity: The gearbox housing and components must be designed with structural integrity in mind. Rigidity and robustness are required to prevent distortion or failure of components under heavy loads.
  • Reliability and Serviceability: Heavy-duty gearboxes should be designed with reliability and ease of maintenance in mind. Access to critical components, such as gears and bearings, for inspection and replacement is important to minimize downtime.

Conclusion: Designing helical gearboxes for heavy-duty applications involves a comprehensive approach that addresses load capacity, material selection, gear tooth design, lubrication, heat dissipation, sealing, efficiency, structural integrity, and serviceability. By carefully considering these factors, engineers can create gearboxes that deliver exceptional performance and longevity in demanding industrial settings.

helical gearbox

Industries Utilizing Helical Gearboxes

Helical gearboxes find widespread use in various industries due to their efficiency, smooth operation, and versatility. Some of the industries that commonly utilize helical gearboxes include:

  • Manufacturing: Helical gearboxes are employed in manufacturing processes for conveyor systems, material handling, and machine tools. Their ability to provide high torque and smooth motion makes them suitable for precision manufacturing.
  • Automotive: Automotive applications include power transmission in vehicles, especially in manual and automatic transmissions. Helical gearboxes contribute to improved fuel efficiency and smoother gear shifting.
  • Energy Generation: Helical gearboxes are used in power generation systems, such as wind turbines and hydroelectric generators. Their efficiency and load-bearing capacity are crucial for converting rotational motion into electrical power.
  • Construction: Construction equipment, such as cranes, excavators, and bulldozers, rely on helical gearboxes for efficient power transmission and control of heavy loads.
  • Mining: Mining operations use helical gearboxes in conveyors, crushers, and other equipment for material handling and ore extraction. The durability and high torque capacity of helical gearboxes make them suitable for demanding mining environments.
  • Marine: Marine vessels use helical gearboxes in propulsion systems to convert engine power into rotational motion for propellers. Their efficiency contributes to fuel savings and reliable marine operation.
  • Food and Beverage: Helical gearboxes are employed in food processing and packaging machinery due to their sanitary design and precise motion control.
  • Textile: Textile machinery relies on helical gearboxes for various processes, including spinning, weaving, and dyeing. Their ability to handle varying loads and provide smooth motion is beneficial in textile production.

The adaptability and efficiency of helical gearboxes make them a suitable choice for a wide range of industries, where reliable power transmission, smooth operation, and load-bearing capacity are essential.

China Good quality Modular Gear Speed Reduction Hypoid Helical Transmission Gear Box   gearbox assembly	China Good quality Modular Gear Speed Reduction Hypoid Helical Transmission Gear Box   gearbox assembly
editor by CX 2023-12-12

China Good quality Modular Helical Gear Box Speed Reduction Transmission Gearbox cycloidal gearbox

Product Description

Product Description

KPC Series helical gearbox is a new generation product which designed basing on the modular system, It can be connected respectively with motors such as IEC standard motor, brake motor, explosion-proof motor, frequency motor, servo motor and so on. it has 4 types(),power from 0.12kw to 4.0kw, ratio from 3.66 to 58.09, Max torque from 120Nm to 500Nm.It can be connect discretionary(foot or flange) and use multi-mounting positions accordingly. This product is widely used in textile, foodstuff, beverage,tobacco, logistics industrial fields,etc.

        Product Characteristics

  1. Modular construction
  2. High efficiency
  3. Precise grinding, low noise
  4. Compact structural design
  5. Univeral mounting
  6. Aluminium housing, light in weight
  7. Carbonize and grinding hardened gears, durable
  8. Multi-structure, can be combined in different forms to meet various transmission condition

       Installation:
      1.Foot mounted
      2.Output Flange mounted
      3.B14 Flange mounted

      Models:
      1.KPC..P(Foot-mounted): KPC01P,KPC02P,KPC03P,KPC04P
      2.KPCF..P(Output Flange-mounted): KPCF01P,KPCF02P,KPCF03P,KPCF04P
      3.KPCZ..P(B14 Flange-mounted): KPCZ01P,KPCZ02P,KPCZ03P,KPCZ04P

Detailed Photos

Product Parameters

GEARBOX SELECTING TABLES  
KPC01..       n1=1400r/min       120Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 120 2600 53.33  160/3          
31 120 2600 45.89  413/9          
35 120 2600 40.10  3248/81          
39 120 2560 35.47  532/15          
49 120 2380 28.50  770/27          
59 120 2230 23.56  212/9          
71 120 2100 19.83  119/6          
78 90 2030 17.86  1357/76          
96 120 1900 14.62  658/45          
101 90 1860 13.80* 69/5          
118 120 1770 11.90  2464/207          
143 120 1660 9.81  1148/117          
153 80 1630 9.17  1219/133          
181 80 1540 7.72  1173/152          
246 70 1390 5.69  1081/190          
302 70 1290 4.63  88/19          
366 70 1210 3.82  943/247          
KPC02..       n1=1400r/min       200Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 200 4500 54.00* 54/1          
30 200 4500 46.46* 3717/80          
34 200 4500 40.60* 203/5          
39 200 4270 35.91* 3591/100          
48 200 3970 28.88* 231/8          
59 200 3730 23.85* 477/20          
70 200 3520 20.08* 3213/160          
82 140 3330 17.10  3009/176          
95 200 3180 14.81* 2961/200          
106 140 3060 13.21  2907/220          
116 200 2970 12.05  1386/115          
141 200 2780 9.93  2583/260          
159 120 2670 8.78  2703/308          
189 120 2520 7.39  2601/352          
257 100 2280 5.45  2397/440          
316 100 2120 4.43  102/23          
383 80 1990 3.66  2091/572          
KPC03..       n1=1400r/min         300Nm
n2 M2max Fr2 i Proportion 71B5/B14 80B5/B14 90B5/B14 100B5/B14 112B5/B14
[r/min] [Nm] [N]
24 300 6000 58.09  639/11          
28 300 6000 50.02  2201/44          
32 300 6000 43.75  4331/99          
36 300 6000 38.73  426/11          
40 300 5860 34.62  4189/121          
49 300 5480 28.30  4047/143          
64 280 5571 21.78  1917/88          
81 280 4660 17.33  3621/209          
93 260 4440 15.06  497/33          
113 260 4160 12.37  1633/132          
136 240 3910 10.28  3053/297          
177 180 3590 7.93  1269/160          
222 180 3320 6.31  2397/380          
255 150 3170 5.48  329/60          
311 150 2970 4.50  1081/240          
374 150 2790 3.74  2571/540          
KPC04..       n1=1400r/min       500Nm  
n2 M2max Fr2 i Proportion 80B5/B14 90B5/B14 100B5/B14 112B5/B14  
[r/min] [Nm] [N]
24 500 8000 58.09  639/11          
28 500 8000 50.02  2201/44          
32 500 8000 43.75  4331/99          
36 500 8000 38.73  426/11          
40 500 7950 34.62  4189/121          
49 500 7430 28.30  4047/143          
64 480 6810 21.78  1917/88          
81 480 6310 17.33  3621/209          
93 460 6571 15.06  497/33          
113 460 5640 12.37  1633/132          
136 440 5300 10.28  3053/297          
177 260 4860 7.93  1269/160          
222 260 4510 6.31  2397/380          
255 230 4300 5.48  329/60          
311 230 4030 4.50  1081/240          
374 200 3780 3.74 2571/540          

Outline Dimension:

Company Profile

About our company:
We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.Our leading products is  full range of RV571-150 worm reducers , also supplied hypoid helical gearbox, PC units, UDL Variators and AC Motors.Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and Middle East and so on.Our aim is to develop and innovate on basis of high quality, and create a good reputation for reducers.

Packing information:Plastic Bags+Cartons+Wooden Cases , or on request
We participate Germany Hannver Exhibition-ZheJiang PTC Fair-Turkey Win Eurasia

Logistics

We can dispatch goods by sea, by train, by air according to customer instruction

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc.

FAQ

1.Q:Can you make as per customer drawing?
A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.

2.Q:What is your terms of payment ?
   A: 30% deposit before production,balance T/T before delivery.

3.Q:Are you a trading company or manufacturer?
   A:We are a manufacurer with advanced equipment and experienced workers.

4.Q:What’s your production capacity?
   A:8000-9000 PCS/MONTH

5.Q:Free sample is available or not?
   A:Yes, we can supply free sample if customer agree to pay for the courier cost

6.Q:Do you have any certificate?
   A:Yes, we have CE certificate and SGS certificate report.

Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Installation and Alignment of Helical Gearboxes

Proper installation and alignment of a helical gearbox are essential to ensure its optimal performance and longevity. Here are the steps involved:

  1. Preparation: Gather all necessary tools, equipment, and safety gear. Ensure the work area is clean and well-lit.
  2. Mounting: Position the gearbox on the designated mounting surface and secure it using appropriate bolts. Follow the manufacturer’s guidelines for mounting torque and procedures.
  3. Shaft Alignment: Use precision tools such as dial indicators to align the input and output shafts. Achieving accurate shaft alignment minimizes stress on the gears and bearings.
  4. Bolt Tightening: Gradually and evenly tighten the mounting bolts, ensuring the gearbox remains properly aligned. Refer to torque specifications provided by the manufacturer.
  5. Lubrication: Fill the gearbox with the recommended lubricant according to the manufacturer’s specifications. Proper lubrication is crucial for reducing friction and wear.
  6. Alignment Check: After tightening the bolts, recheck the shaft alignment to ensure it hasn’t shifted during the tightening process.
  7. Run-In Period: Gradually introduce load to the gearbox to allow the gears to seat properly. Monitor the gearbox for any unusual noises, vibrations, or temperature changes during this period.
  8. Final Checks: Verify that the gearbox operates smoothly, without excessive noise or vibrations. Monitor the gearbox’s temperature during operation to ensure it remains within recommended limits.
  9. Regular Inspection: Schedule periodic inspections to check for any signs of wear, misalignment, or leakage. Address any issues promptly to prevent further damage.

It’s important to follow the manufacturer’s installation and alignment guidelines specific to the helical gearbox model you’re working with. Improper installation and alignment can lead to premature wear, reduced efficiency, and potential failure of the gearbox.

helical gearbox

Can Helical Gearboxes Be Retrofitted into Existing Machinery Designs?

Yes, helical gearboxes can often be retrofitted into existing machinery designs, providing an opportunity to upgrade the performance, efficiency, and reliability of older equipment. Here are the key points to consider when retrofitting helical gearboxes:

1. Compatibility: Before proceeding with a retrofit, it’s essential to ensure that the new helical gearbox is compatible with the existing machinery in terms of size, mounting, and shaft connections. Proper measurements and analysis are necessary to avoid any misalignment or fitment issues.

2. Space Considerations: Helical gearboxes may have a different physical profile compared to the original gearboxes. Engineers need to assess the available space in the machinery and confirm that the new gearbox will fit without major modifications.

3. Shaft Alignment: Proper shaft alignment is crucial to ensure smooth and efficient operation. During the retrofit, it’s important to align the new helical gearbox with other components in the system to prevent premature wear, noise, and vibration.

4. Power and Torque Ratings: The power and torque ratings of the helical gearbox should match or exceed the requirements of the machinery. This ensures that the new gearbox can handle the loads and stresses that the machinery may encounter.

5. Performance Improvements: Retrofitting with helical gearboxes can lead to improved efficiency, reduced noise, and smoother operation. These benefits can positively impact the overall performance and lifespan of the machinery.

6. Engineering Expertise: Retrofitting involves careful planning, engineering analysis, and implementation. Working with experienced engineers or gearbox specialists is advisable to ensure a successful retrofit without compromising the integrity of the machinery.

7. Cost-Benefit Analysis: Assessing the costs of the retrofit, including the cost of the new gearbox, installation, downtime, and potential modifications, is essential. Comparing these costs to the anticipated benefits of improved performance and efficiency will help make an informed decision.

8. Maintenance Considerations: Retrofitting may also impact maintenance practices. It’s important to understand any changes in lubrication requirements, inspection intervals, and servicing needs that come with the new gearbox.

Conclusion: Retrofitting helical gearboxes into existing machinery designs can be a cost-effective way to enhance the performance and extend the lifespan of equipment. However, careful planning, engineering analysis, and professional expertise are crucial to ensure a successful retrofit that delivers the desired improvements without causing unforeseen issues.

helical gearbox

Efficiency of Helical Gearboxes Compared to Other Gearbox Types

Helical gearboxes are known for their relatively high efficiency compared to some other gearbox types. Here’s a comparison of their efficiency with other common gearbox configurations:

  • Straight-Cut (Spur) Gearboxes: Helical gearboxes are generally more efficient than straight-cut gearboxes. The helical tooth design allows for smoother engagement and better load distribution, reducing friction and energy losses. This results in higher overall efficiency for helical gearboxes.
  • Bevel Gearboxes: Bevel gearboxes, which are commonly used for right-angle applications, typically have lower efficiency compared to helical gearboxes. The bevel gear design involves sliding contact between gear teeth, leading to higher friction and energy losses.
  • Worm Gearboxes: Helical gearboxes are generally more efficient than worm gearboxes. Worm gearboxes have a relatively lower efficiency due to the sliding action between the worm and the gear, resulting in higher friction and heat generation.
  • Planetary Gearboxes: Planetary gearboxes can offer comparable efficiency to helical gearboxes, especially when well-designed. However, planetary gearboxes can have variations in efficiency depending on factors such as the number of planet gears and gear arrangements.

While helical gearboxes tend to offer good efficiency, it’s important to note that efficiency can also be influenced by factors such as gear quality, lubrication, operating conditions, and maintenance practices. Consulting with gearbox manufacturers and considering specific application requirements is crucial when determining the most efficient gearbox solution.

China Good quality Modular Helical Gear Box Speed Reduction Transmission Gearbox   cycloidal gearbox	China Good quality Modular Helical Gear Box Speed Reduction Transmission Gearbox   cycloidal gearbox
editor by CX 2023-11-27

China best Helical Gear Motor Bevel Helical Transmission Gearbox Speed Reducer Geared Motor Box for Conveyor Reverse Gearbox differential gearbox

Product Description

Product Description

Customized GearBox

Gear units adopt currency layout and may transform into speral reducer according to customer’s requirement.

The housing of 1 size can realize parallel shaft,right-angle shaft models and horizonal,vertical mounting modes.Variety of components is reducible,the number of reducer’s mode is augmentable.

Sound-absorbable structure,large surface,big fan reduce temperature and noise,advanced grinding process of cylindrical gear and bevel gear improve stability and transmit power more efficeintly.

Input mode:motor connected flange,shaft input.

Output mode:solid shaft with flat key,hollow shaft with flat key,hollow shaft with shrink disk,hollow or CZPT shaft with involute splines,solid shaft with flange.

Mounting mode:Foot-mounted,glange-mounted,swing base-mounted,torque-arm-mounted.

High precision grade with Gleason and Hofler grinding machineBetter meshing of gearsTop brands bearings and oil sealLong work lifeLow noiseNo oil leakageCompact design, strong and solidBetter cooling propertyCustomized design avaialbeDiversified range catering for power.


Company Profile

Our Company

HangZhou Metal Co., Ltd. (ASMT) serves in metallurgical (especial steel & aluminum), mining, mineral, cement etc. industry, integrating manufacturing, engineering, supply  chain management, construction of package in domestic and abroad, international trade  etc..

Our Advantages

Our Advantages

1. Whole process quality control, from raw material to delivery 

* Processes including: raw material, pattern, casting, heat treatment, machining, packing

2. Regular reporting for any update for process 

*Reports contents including: 

Chemical composition, Mechanical properties, Dimensional inspection, Ultrasonic test (UT), Magnetic particle inspection (MT), Penetrant flaw detection (PT)
 

Why choose us?

Why Choose Us?
 

1. Pre-sales service: 

To supply product application technological communication, drawing design, process 

design, test plan and packing and unloading plan. 

2. In-sales service: 

To supply production process report and inspection report. 

To actively associate shipping with customers. 

3. After-sales service: 

To supply remote training instruction on in-site operation. 

To supply solution to unexpected problem arising at user’s site. 

To follow up product’s service life.

Packaging & Shipping

Packing&Shipping

We will choose the best mode of transportation for you.Fast, high safety, simple operation.
Exquisite and strong packing, ensure you receive the most perfect goods.

FAQ

FAQ
1. Q: How about delivery time?
A: After receiving the payment, we will put the goods into production as soon as possible to ensure that you can receive the goods quickly. Due to the different delivery time of different products, if you need a specific delivery time, you can contact our online customer service, 24 hours online.

2. Q: What is the loading port?
A: We will arrange the best loading port according to your requirement.

3. Q: Can you do OEM?
A: Yes, we welcome OEM for our customers. We have professional technical personnel to provide technical support.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction, Speed Increase
Layout: Three-Ring
Hardness: Soft Tooth Surface
Installation: Torque Arm Type
Step: Stepless
Customization:
Available

|

Customized Request

helical gearbox

Advancements in Helical Gearbox Technology

Advancements in helical gearbox technology have led to improved performance, efficiency, and versatility. Here are some notable advancements:

  • Material Innovations: The use of advanced materials, such as high-strength alloys and composites, has enhanced the durability and load-carrying capacity of helical gears. These materials also contribute to reduced weight and improved efficiency.
  • Precision Manufacturing: Modern manufacturing techniques, including CNC machining and gear grinding, have enabled the production of helical gears with higher accuracy and tighter tolerances. This results in smoother operation and reduced noise levels.
  • Gear Tooth Profile Optimization: Advanced computer simulations and modeling techniques allow for the optimization of gear tooth profiles. This results in better load distribution, reduced stress concentration, and improved overall gearbox efficiency.
  • Lubrication and Cooling: Improved lubrication systems and cooling mechanisms help maintain optimal operating temperatures and extend the lifespan of helical gearboxes. This is particularly important for high-demand applications.
  • Noise and Vibration Reduction: Innovative designs and precision manufacturing techniques have led to helical gears with reduced noise and vibration levels. This advancement is crucial for industries where noise reduction is a priority.
  • Compact Design: Advancements in gear design and manufacturing have allowed for more compact and lightweight helical gearbox configurations, making them suitable for space-constrained environments.
  • Integration with Electronics: Some modern helical gearboxes are designed for seamless integration with electronic control systems. This enables better monitoring, control, and optimization of gearbox performance.
  • Customization: Advancements in manufacturing and design tools allow for greater customization of helical gearboxes to meet specific application requirements. This includes adapting gear ratios, sizes, and configurations.

In summary, advancements in helical gearbox technology have led to enhanced performance, durability, efficiency, and customization options. These innovations continue to make helical gearboxes a versatile and reliable choice for a wide range of industrial applications.

helical gearbox

Troubleshooting Common Issues in Helical Gear Systems

Troubleshooting helical gear systems involves identifying and addressing common issues that can affect their performance. Here’s a step-by-step process:

  1. Visual Inspection: Begin by visually inspecting the gearbox for any signs of wear, damage, or misalignment. Look for worn or chipped gear teeth, oil leakage, and unusual noise.
  2. Noise Analysis: If noise is present, analyze its type and frequency. Whining or grinding noises could indicate misalignment or damaged gears, while clicking or knocking sounds might point to loose components.
  3. Lubrication Check: Ensure that the gearbox is properly lubricated with the recommended type and quantity of lubricant. Insufficient lubrication can lead to increased friction and wear.
  4. Alignment Check: Check the alignment of the gears and shafts. Misalignment can result in uneven wear, noise, and reduced efficiency. Realign components if necessary.
  5. Gear Inspection: Inspect gear teeth for signs of pitting, scoring, or wear. Replace any damaged gears to prevent further issues.
  6. Bearing Examination: Check the condition of bearings that support shafts and gears. Worn or damaged bearings can lead to increased vibration and noise.
  7. Tightening and Fastening: Ensure that all bolts, fasteners, and connections are properly tightened. Loose components can cause vibrations and noise.
  8. Load Analysis: Evaluate the load conditions and operating parameters of the gearbox. Ensure that the gearbox is not subjected to loads beyond its design capacity.
  9. Temperature Monitoring: Monitor the operating temperature of the gearbox. Excessive heat can indicate problems such as inadequate lubrication or overloading.
  10. Consulting Experts: If issues persist or if you’re unsure about the diagnosis and solution, consult gearbox experts or manufacturers for guidance.

By following this troubleshooting process, you can identify and resolve common issues in helical gear systems, ensuring optimal performance and longevity.

helical gearbox

Differences Between Helical Gearboxes and Spur Gearboxes

Helical gearboxes and spur gearboxes are two common types of gearboxes used in various applications. Here are the key differences between them:

  • Tooth Design: The main difference between helical and spur gearboxes lies in their tooth design. Helical gearboxes feature helical teeth that are cut at an angle to the gear axis, while spur gearboxes have straight-cut teeth that run parallel to the gear axis.
  • Engagement: Helical gearboxes offer a gradual and smooth engagement of teeth due to their helical tooth design. This results in reduced noise and vibration compared to spur gearboxes, which can have more abrupt and noisy tooth engagement.
  • Load Distribution: Helical gearboxes have a higher contact ratio between teeth at any given time, which leads to better load distribution across the gear teeth. Spur gearboxes, on the other hand, have fewer teeth in contact at a time, potentially leading to higher stress on individual teeth.
  • Efficiency: Helical gearboxes tend to be more efficient than spur gearboxes due to the helical tooth design, which reduces friction and energy losses during gear meshing. The gradual engagement of helical teeth contributes to this higher efficiency.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to spur gearboxes. The helical tooth design and smooth engagement help in reducing the impact of gear meshing on overall noise levels.
  • Applications: Helical gearboxes are commonly used in applications that require higher torque and smoother operation, such as heavy machinery, automotive transmissions, and industrial equipment. Spur gearboxes are suitable for applications with moderate loads and where noise considerations are not critical.

Overall, helical gearboxes offer advantages in terms of efficiency, load distribution, and noise reduction compared to spur gearboxes. However, the choice between the two depends on specific application requirements and factors such as torque, speed, space constraints, and noise considerations.

China best Helical Gear Motor Bevel Helical Transmission Gearbox Speed Reducer Geared Motor Box for Conveyor Reverse Gearbox   differential gearbox	China best Helical Gear Motor Bevel Helical Transmission Gearbox Speed Reducer Geared Motor Box for Conveyor Reverse Gearbox   differential gearbox
editor by CX 2023-10-20

China wholesaler Stable Transmission Helical Gear Box with Wide Ratio 3.66-58.09 gearbox adjustment

Product Description

Product Description

KPC Series helical gearbox is a new generation product which designed basing on the modular system, It can be connected respectively with motors such as IEC standard motor, brake motor, explosion-proof motor, frequency motor, servo motor and so on. it has 4 types(),power from 0.12kw to 4.0kw, ratio from 3.66 to 58.09, Max torque from 120Nm to 500Nm.It can be connect discretionary(foot or flange) and use multi-mounting positions accordingly. This product is widely used in textile, foodstuff, beverage,tobacco, logistics industrial fields,etc.

        Product Characteristics

  1. Modular construction
  2. High efficiency
  3. Precise grinding, low noise
  4. Compact structural design
  5. Univeral mounting
  6. Aluminium housing, light in weight
  7. Carbonize and grinding hardened gears, durable
  8. Multi-structure, can be combined in different forms to meet various transmission condition

       Installation:
      1.Foot mounted
      2.Output Flange mounted
      3.B14 Flange mounted

      Models:
      1.KPC..P(Foot-mounted): KPC01P,KPC02P,KPC03P,KPC04P
      2.KPCF..P(Output Flange-mounted): KPCF01P,KPCF02P,KPCF03P,KPCF04P
      3.KPCZ..P(B14 Flange-mounted): KPCZ01P,KPCZ02P,KPCZ03P,KPCZ04P

Detailed Photos

Product Parameters

GEARBOX SELECTING TABLES  
KPC01..       n1=1400r/min       120Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 120 2600 53.33  160/3          
31 120 2600 45.89  413/9          
35 120 2600 40.10  3248/81          
39 120 2560 35.47  532/15          
49 120 2380 28.50  770/27          
59 120 2230 23.56  212/9          
71 120 2100 19.83  119/6          
78 90 2030 17.86  1357/76          
96 120 1900 14.62  658/45          
101 90 1860 13.80* 69/5          
118 120 1770 11.90  2464/207          
143 120 1660 9.81  1148/117          
153 80 1630 9.17  1219/133          
181 80 1540 7.72  1173/152          
246 70 1390 5.69  1081/190          
302 70 1290 4.63  88/19          
366 70 1210 3.82  943/247          
KPC02..       n1=1400r/min       200Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 200 4500 54.00* 54/1          
30 200 4500 46.46* 3717/80          
34 200 4500 40.60* 203/5          
39 200 4270 35.91* 3591/100          
48 200 3970 28.88* 231/8          
59 200 3730 23.85* 477/20          
70 200 3520 20.08* 3213/160          
82 140 3330 17.10  3009/176          
95 200 3180 14.81* 2961/200          
106 140 3060 13.21  2907/220          
116 200 2970 12.05  1386/115          
141 200 2780 9.93  2583/260          
159 120 2670 8.78  2703/308          
189 120 2520 7.39  2601/352          
257 100 2280 5.45  2397/440          
316 100 2120 4.43  102/23          
383 80 1990 3.66  2091/572          
KPC03..       n1=1400r/min         300Nm
n2 M2max Fr2 i Proportion 71B5/B14 80B5/B14 90B5/B14 100B5/B14 112B5/B14
[r/min] [Nm] [N]
24 300 6000 58.09  639/11          
28 300 6000 50.02  2201/44          
32 300 6000 43.75  4331/99          
36 300 6000 38.73  426/11          
40 300 5860 34.62  4189/121          
49 300 5480 28.30  4047/143          
64 280 5571 21.78  1917/88          
81 280 4660 17.33  3621/209          
93 260 4440 15.06  497/33          
113 260 4160 12.37  1633/132          
136 240 3910 10.28  3053/297          
177 180 3590 7.93  1269/160          
222 180 3320 6.31  2397/380          
255 150 3170 5.48  329/60          
311 150 2970 4.50  1081/240          
374 150 2790 3.74  2571/540          
KPC04..       n1=1400r/min       500Nm  
n2 M2max Fr2 i Proportion 80B5/B14 90B5/B14 100B5/B14 112B5/B14  
[r/min] [Nm] [N]
24 500 8000 58.09  639/11          
28 500 8000 50.02  2201/44          
32 500 8000 43.75  4331/99          
36 500 8000 38.73  426/11          
40 500 7950 34.62  4189/121          
49 500 7430 28.30  4047/143          
64 480 6810 21.78  1917/88          
81 480 6310 17.33  3621/209          
93 460 6571 15.06  497/33          
113 460 5640 12.37  1633/132          
136 440 5300 10.28  3053/297          
177 260 4860 7.93  1269/160          
222 260 4510 6.31  2397/380          
255 230 4300 5.48  329/60          
311 230 4030 4.50  1081/240          
374 200 3780 3.74 2571/540          

Outline Dimension:

Company Profile

About our company:
We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.Our leading products is  full range of RV571-150 worm reducers , also supplied hypoid helical gearbox, PC units, UDL Variators and AC Motors.Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and Middle East and so on.Our aim is to develop and innovate on basis of high quality, and create a good reputation for reducers.

Packing information:Plastic Bags+Cartons+Wooden Cases , or on request
We participate Germany Hannver Exhibition-ZheJiang PTC Fair-Turkey Win Eurasia

Logistics

We can dispatch goods by sea, by train, by air according to customer instruction

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc.

FAQ

1.Q:Can you make as per customer drawing?
A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.

2.Q:What is your terms of payment ?
   A: 30% deposit before production,balance T/T before delivery.

3.Q:Are you a trading company or manufacturer?
   A:We are a manufacurer with advanced equipment and experienced workers.

4.Q:What’s your production capacity?
   A:8000-9000 PCS/MONTH

5.Q:Free sample is available or not?
   A:Yes, we can supply free sample if customer agree to pay for the courier cost

6.Q:Do you have any certificate?
   A:Yes, we have CE certificate and SGS certificate report.

Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Advancements in Helical Gearbox Technology

Advancements in helical gearbox technology have led to improved performance, efficiency, and versatility. Here are some notable advancements:

  • Material Innovations: The use of advanced materials, such as high-strength alloys and composites, has enhanced the durability and load-carrying capacity of helical gears. These materials also contribute to reduced weight and improved efficiency.
  • Precision Manufacturing: Modern manufacturing techniques, including CNC machining and gear grinding, have enabled the production of helical gears with higher accuracy and tighter tolerances. This results in smoother operation and reduced noise levels.
  • Gear Tooth Profile Optimization: Advanced computer simulations and modeling techniques allow for the optimization of gear tooth profiles. This results in better load distribution, reduced stress concentration, and improved overall gearbox efficiency.
  • Lubrication and Cooling: Improved lubrication systems and cooling mechanisms help maintain optimal operating temperatures and extend the lifespan of helical gearboxes. This is particularly important for high-demand applications.
  • Noise and Vibration Reduction: Innovative designs and precision manufacturing techniques have led to helical gears with reduced noise and vibration levels. This advancement is crucial for industries where noise reduction is a priority.
  • Compact Design: Advancements in gear design and manufacturing have allowed for more compact and lightweight helical gearbox configurations, making them suitable for space-constrained environments.
  • Integration with Electronics: Some modern helical gearboxes are designed for seamless integration with electronic control systems. This enables better monitoring, control, and optimization of gearbox performance.
  • Customization: Advancements in manufacturing and design tools allow for greater customization of helical gearboxes to meet specific application requirements. This includes adapting gear ratios, sizes, and configurations.

In summary, advancements in helical gearbox technology have led to enhanced performance, durability, efficiency, and customization options. These innovations continue to make helical gearboxes a versatile and reliable choice for a wide range of industrial applications.

helical gearbox

Impact of Thermal Expansion on Helical Gearbox Performance

Thermal expansion can significantly affect the performance of helical gearboxes due to changes in dimensions and clearances caused by temperature variations. Here’s how it impacts:

1. Misalignment: Temperature changes can lead to differential expansion of gearbox components. This can result in misalignment of gears, shafts, and bearings, leading to increased friction, noise, and reduced efficiency.

2. Lubrication: Thermal expansion can alter the clearances within the gearbox, affecting the distribution and viscosity of the lubricating oil. Inadequate lubrication due to temperature-induced changes can result in increased wear and premature failure.

3. Gear Tooth Engagement: Temperature fluctuations can cause gear teeth to expand or contract, affecting the meshing engagement and load distribution. Inconsistent gear tooth contact can lead to uneven wear and reduced gear life.

4. Bearing Performance: Bearings in helical gearboxes are sensitive to temperature changes. Excessive heat can lead to reduced bearing life, increased friction, and potential seizure, affecting overall gearbox performance.

5. Noise and Vibration: Thermal expansion can lead to changes in gear and component clearances, resulting in altered vibration patterns and increased noise levels. This can impact the comfort of the system and indicate potential issues.

6. Material Fatigue: Repeated cycles of thermal expansion and contraction can lead to material fatigue and stress accumulation, reducing the overall lifespan of gearbox components.

Managing Thermal Effects: Manufacturers design helical gearboxes with considerations for thermal expansion, using materials with low coefficients of thermal expansion and incorporating features like expansion joints or thermal isolators. Proper lubrication, monitoring temperature, and maintaining consistent operating conditions are also crucial in mitigating thermal expansion effects.

Understanding and managing the impact of thermal expansion is essential to maintain the performance, efficiency, and durability of helical gearboxes.

helical gearbox

Helical Gearbox: Overview and Working Mechanism

A helical gearbox is a type of mechanical device used to transmit power and motion between rotating shafts. It employs helical gears, which are cylindrical gears with teeth that are cut at an angle to the gear axis. This design feature gives helical gearboxes their distinctive helical shape and provides several advantages in terms of efficiency, smoothness, and load-bearing capabilities.

The working mechanism of a helical gearbox involves the interaction of helical gears, which mesh together to transmit torque and motion. Here’s how it works:

  1. Gear Tooth Engagement: When power is applied to the input shaft of the gearbox, the helical gear on the input shaft meshes with the helical gear on the output shaft.
  2. Helical Angle: The helical angle of the gear teeth causes a gradual engagement between the teeth, resulting in a smooth and quiet meshing process compared to straight-cut gears.
  3. Torque Transfer: As the input gear rotates, it transfers rotational force (torque) to the output gear through the meshing of their helical teeth.
  4. Direction of Rotation: Depending on the arrangement of the helical gears, the output shaft’s direction of rotation can be the same as or opposite to that of the input shaft.
  5. Load Distribution: The helical design allows for multiple teeth to be engaged at any given moment, distributing the load more evenly across the gears. This results in higher load-carrying capacity and reduced wear on gear teeth.
  6. Efficiency: Helical gearboxes are known for their high efficiency due to the gradual tooth engagement and larger contact area, resulting in minimal energy loss as compared to other gear types.

Helical gearboxes find applications in various industries where smooth operation, high efficiency, and compact design are important. They are commonly used in machinery, conveyors, automotive transmissions, industrial equipment, and more.

China wholesaler Stable Transmission Helical Gear Box with Wide Ratio 3.66-58.09   gearbox adjustment	China wholesaler Stable Transmission Helical Gear Box with Wide Ratio 3.66-58.09   gearbox adjustment
editor by CX 2023-10-16

China Custom High Efficiency Good Quality R Series RF57 Helical Gearbox Transmission Reduction Gear Box with Shaft Gear Motor with Good quality

Product Description


R Series reducers are designed and manufactured on the basis of modular combination system.
There are a lot of motor combinations, installation forms and structural schemes. The transmission
ratio is classified and fine to meet different operating conditions, and the performance is superior.
Reinforced high rigid cast iron box; The hardened gear is made of high-quality alloy steel. Its surface
is carburized, quenched and hardened, and the gear is finely ground. It has stable transmission, low
noise, and large bearing capacity. Low temperature rise, long service life. It is widely used in metallurgy,1. Features: small offset output, compact structure, maximum use of box space, use of integral casting box, good stiffness, can improve the strength of the shaft and bearing life.

2. Installation type and output mode: bottom seated type and large and small flange type installation, CZPT shaft output.

3. Input mode: direct motor, shaft input and connecting flange input.

4. Reduction ratio: secondary 5~24.8, tertiary 27.2~264, R/R combination up to 18125.

5. Average efficiency: Class II 96%, Class III 94%, R/R combination 85%.

6. The R series specially designed for mixing can bear large axial and radial forces.

Technical parameters:

Coaxial coaxial output

R reducer

Power: 0.12KW~160KW

Torque: 1.4N · m ~ 23200N · m

Output speed: 0.06 ~ 1090r/min

Model example:

R17-Y4-4P-32.40-M1-0°

R: Series code

F: Shaft extension flange installation

17: Machine model

Y: Three phase AC asynchronous motor

4: Motor power

4P: motor stage

32.40: Transmission ratio

M1: Installation type

0 °: junction box position (0 ° – 270 °)

R series helical gear hardened gear reducer

Basic model of R series reducer:

R17R27R37R47R57R67R77R87R97R107R137R147R167

RF17RF27RF37RF47RF57RF67RF77RF87RF97RF107RF137RF147RF167

RX37RX57RX67RX77RX87RX97RX107RX127RX157

RXF37RXF57RXF67RXF77RXF87RXF97RXF107RXF127RXF157

R series helical gear reducer with hard tooth surface features small size, light weight, high bearing capacity, high efficiency, long service life, convenient installation, wide motor power range, fine transmission ratio classification, etc. It can be widely used in equipment that needs to be decelerated in various industries.

sewage treatment, chemical industry, pharmacy and other industries.

Company Profile

 

Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 430/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Precision and High-Accuracy Applications of Helical Gearboxes

Helical gearboxes are well-suited for precision and high-accuracy applications due to their unique design and performance characteristics:

  • Helical Gearing: The helical gears in these gearboxes offer smooth and continuous meshing, resulting in reduced backlash and improved positioning accuracy.
  • Efficiency: Helical gearboxes are known for their high efficiency, which minimizes energy losses and heat generation. This is crucial for maintaining precision in applications where even small deviations can have significant impacts.
  • Noise and Vibration: The helical gear tooth engagement helps in reducing noise and vibration levels, making them suitable for environments where quiet operation is required.
  • Load Distribution: Helical gears distribute load across multiple teeth, minimizing localized wear and extending the lifespan of the gearbox.
  • Smooth Motion: Helical gearboxes provide smoother motion transitions, which is crucial in precision applications where jerky or sudden movements are undesirable.
  • Positional Accuracy: The reduced backlash and improved meshing characteristics of helical gears contribute to higher positional accuracy, making these gearboxes ideal for applications such as CNC machines, robotics, and medical equipment.
  • Compact Design: Helical gearboxes can achieve high gear ratios in a relatively compact form factor, making them suitable for applications where space is limited.

Examples of precision applications where helical gearboxes are commonly used include CNC machining, robotics, semiconductor manufacturing, medical equipment, and metrology devices. The combination of efficiency, smooth operation, and accuracy makes helical gearboxes a preferred choice for achieving consistent and reliable performance in such applications.

helical gearbox

Considerations for Designing Helical Gearboxes for Heavy-Duty Applications

Designing helical gearboxes for heavy-duty applications requires careful consideration of various factors to ensure reliable and efficient operation under high loads and demanding conditions. Here are the key considerations:

  • Load Capacity: Heavy-duty applications involve substantial loads. The gearbox must be designed to handle these loads while preventing premature wear and failure. Calculations of the load distribution, contact stresses, and material strength are crucial.
  • Material Selection: High-strength and durable materials are essential for heavy-duty gearboxes. Alloy steels or special heat-treated materials are often chosen to provide the necessary strength and resistance to fatigue and wear.
  • Gear Tooth Design: Optimal gear tooth profiles, such as optimized helix angles and tooth modifications, contribute to smoother engagement and reduced stress concentrations. This enhances the gearbox’s ability to handle heavy loads without excessive wear.
  • Bearing Selection: Robust and high-capacity bearings are necessary to support the heavy loads and provide reliable shaft support. The bearings must be able to withstand both radial and axial forces generated during operation.
  • Lubrication: Adequate lubrication is critical for heavy-duty gearboxes. Lubricants with high load-carrying capacity and extreme pressure properties are chosen to ensure proper lubrication under heavy loads and to reduce friction and wear.
  • Heat Dissipation: Heavy-duty applications can generate significant heat due to friction and load. Efficient heat dissipation mechanisms, such as cooling fins or oil cooling, should be incorporated into the gearbox design to prevent overheating and thermal damage.
  • Sealing: Effective sealing is necessary to prevent contaminants from entering the gearbox and to retain lubricants. Seals must be capable of withstanding the conditions of the application, including high loads, vibrations, and potential exposure to harsh environments.
  • Efficiency: Although heavy-duty applications prioritize load capacity, achieving acceptable levels of efficiency is still important to minimize energy losses and heat generation. Proper gear tooth design and high-quality manufacturing contribute to better efficiency.
  • Structural Integrity: The gearbox housing and components must be designed with structural integrity in mind. Rigidity and robustness are required to prevent distortion or failure of components under heavy loads.
  • Reliability and Serviceability: Heavy-duty gearboxes should be designed with reliability and ease of maintenance in mind. Access to critical components, such as gears and bearings, for inspection and replacement is important to minimize downtime.

Conclusion: Designing helical gearboxes for heavy-duty applications involves a comprehensive approach that addresses load capacity, material selection, gear tooth design, lubrication, heat dissipation, sealing, efficiency, structural integrity, and serviceability. By carefully considering these factors, engineers can create gearboxes that deliver exceptional performance and longevity in demanding industrial settings.

helical gearbox

Industries Utilizing Helical Gearboxes

Helical gearboxes find widespread use in various industries due to their efficiency, smooth operation, and versatility. Some of the industries that commonly utilize helical gearboxes include:

  • Manufacturing: Helical gearboxes are employed in manufacturing processes for conveyor systems, material handling, and machine tools. Their ability to provide high torque and smooth motion makes them suitable for precision manufacturing.
  • Automotive: Automotive applications include power transmission in vehicles, especially in manual and automatic transmissions. Helical gearboxes contribute to improved fuel efficiency and smoother gear shifting.
  • Energy Generation: Helical gearboxes are used in power generation systems, such as wind turbines and hydroelectric generators. Their efficiency and load-bearing capacity are crucial for converting rotational motion into electrical power.
  • Construction: Construction equipment, such as cranes, excavators, and bulldozers, rely on helical gearboxes for efficient power transmission and control of heavy loads.
  • Mining: Mining operations use helical gearboxes in conveyors, crushers, and other equipment for material handling and ore extraction. The durability and high torque capacity of helical gearboxes make them suitable for demanding mining environments.
  • Marine: Marine vessels use helical gearboxes in propulsion systems to convert engine power into rotational motion for propellers. Their efficiency contributes to fuel savings and reliable marine operation.
  • Food and Beverage: Helical gearboxes are employed in food processing and packaging machinery due to their sanitary design and precise motion control.
  • Textile: Textile machinery relies on helical gearboxes for various processes, including spinning, weaving, and dyeing. Their ability to handle varying loads and provide smooth motion is beneficial in textile production.

The adaptability and efficiency of helical gearboxes make them a suitable choice for a wide range of industries, where reliable power transmission, smooth operation, and load-bearing capacity are essential.

China Custom High Efficiency Good Quality R Series RF57 Helical Gearbox Transmission Reduction Gear Box with Shaft Gear Motor   with Good quality China Custom High Efficiency Good Quality R Series RF57 Helical Gearbox Transmission Reduction Gear Box with Shaft Gear Motor   with Good quality
editor by CX 2023-10-10

China manufacturer Replacement of Motovario Nmrv High Precision Transmission Helical Gear Box with high quality

Product Description

Product Description

KPM-KPB series helical-hypoid gearboxes are the new-generation product with a compromise of advanced technology both at home and abroad.This product is widely used in textile, foodstuff, beverage,tobacco, logistics industrial fields,etc.
Main Features:
(1) Driven by hypoid gears, which has big ratios.
(2) Large output torque, high efficiency(up to 92%), energy saving and environmental protection.
(3) High quality aluminum alloy housing, light in weight and non-rusting.
(4) Smooth in running and low in noise, and can work long time in dreadful conditions.
(5) Good-looking appearance, durable service life and small volume.
(6) Suitable for all round installation, wide application and easy use.
(7) KPM series can replace NMRV worm gearbox; KPB series can replace CZPT W series worm gearbox;
(8) Modular and multi-structure can meet the demands of various conditions.
 Main Material:
(1) Housing: aluminum alloy 
(2) Gear wheel: 20CrMnTiH1,carbonize & quencher heat treatment make the hardness of gears surface up to 56-62 HRC, retain carburization layers thickness between 0.3 and 0.5mm after precise grinding.

Detailed Photos

Product Parameters

Model Information:

GEARBOX SELECTING TABLES    
KPM50..           n1=1400r/min       160Nm    
                         
Model i i n2 M2max Fr2 63B5 71B5/B14 80B5/B14 90B5/B14    
nominal actual [r/min] [Nm] [N]    
3 Stage    
KPM50C   300 294.05 4.8 130  4100   N/A N/A N/A    
KPM50C   250 244.29 5.8 130  4100   N/A N/A N/A    
KPM50C   200 200.44 7.0  130  4100   N/A N/A N/A    
KPM50C   150 146.67 9.6 160  4000   N/A N/A N/A    
KPM50C   125 120.34 12 160  3770     N/A N/A    
KPM50C   100 101.04 14 160  3560     N/A N/A    
KPM50C   75 74.62 19 160  3220     N/A N/A    
KPM50C   60 62.36 23 160  3030     N/A N/A    
KPM50C   50 52.36 27 160  2860     N/A N/A    
2 Stage    
KPM50B   60 58.36 24 130  2960     N/A N/A    
KPM50B   50 48.86 29 130  2790       N/A    
KPM50B   40 40.09 35 130  2610       N/A    
KPM50B   30 29.33 48 160  2350       N/A    
KPM50B   25 24.07 59 160  2200            
KPM50B   20 20.21 70 160  2080            
KPM50B   15 14.92 94 160  1880            
KPM50B   12.5 12.47 113 160  1770            
KPM50B   10 10.47 134 160  1670            
KPM50B   7.5 7.73 182 160  1510            
                         
                         
KPM63..,KPB63..           n1=1400r/min       180Nm    
                         
Model i i n2 M2max Fr2 63B5 71B5/B14 80B5/B14 90B5/B14    
nominal actual [r/min] [Nm] [N]    
3 Stage    
KPM63C KPB63C 300 302.50  4.7 160  4800   N/A N/A N/A    
KPM63C KPB63C 250 243.57  5.8 160  4800   N/A N/A N/A    
KPM63C KPB63C 200 196.43  7.2  160  4800     N/A N/A    
KPM63C KPB63C 150 151.56  9.3 180  4650     N/A N/A    
KPM63C KPB63C 125 122.22  12 180  4330     N/A N/A    
KPM63C KPB63C 100 94.50  14 180  4070     N/A N/A    
KPM63C KPB63C 75 73.33  20 180  3650       N/A    
KPM63C KPB63C 60 63.33  23 180  3480       N/A    
KPM63C KPB63C 50 52.48  27 180  3270       N/A    
2 Stage    
KPM63B KPB63B 60 60.50  24 160  3430       N/A    
KPM63B KPB63B 50 48.71  29 160  3190            
KPM63B KPB63B 40 39.29  36 160  2970            
KPM63B KPB63B 30 30.31  47 180  2720            
KPM63B KPB63B 25 24.44  58 180  2530 N/A          
KPM63B KPB63B 20 18.90  70 180  2380 N/A          
KPM63B KPB63B 15 14.67  96 180  2130 N/A N/A        
KPM63B KPB63B 12.5 12.67  111 180  2030 N/A N/A        
KPM63B KPB63B 10 10.50  134 180  1910 N/A N/A        
KPM63B KPB63B 7.5 7.60  185 180  1710 N/A N/A        
                         
                         
KPM75..,KPB75..           n1=1400r/min           350Nm
                         
Model i i n2 M2max Fr2 63B5 71B5 80B5/B14 90B5/B14 100B5/B14 112B5/B14
nominal actual [r/min] [Nm] [N]
3 Stage
KPM75C KPB75C 300 297.21  4.8 300  6500     N/A N/A N/A N/A
KPM75C KPB75C 250 240.89  5.9 300  6500     N/A N/A N/A N/A
KPM75C KPB75C 200 200.66  7.0  300  6500     N/A N/A N/A N/A
KPM75C KPB75C 150 149.30  9.3 350  6500       N/A N/A N/A
KPM75C KPB75C 125 121.00  12 350  5980       N/A N/A N/A
KPM75C KPB75C 100 100.80  15 350  5520       N/A N/A N/A
KPM75C KPB75C 75 79.40  19 350  5040         N/A N/A
KPM75C KPB75C 60 62.43  23 350  4730 N/A       N/A N/A
KPM75C KPB75C 50 49.18  29 350  4370 N/A       N/A N/A
2 Stage
KPM75B KPB75B 60 59.44  24 300  4660 N/A       N/A N/A
KPM75B KPB75B 50 48.18  30 300  4340 N/A       N/A N/A
KPM75B KPB75B 40 40.13  35 300  4080 N/A         N/A
KPM75B KPB75B 30 29.86  47 350  3720 N/A N/A       N/A
KPM75B KPB75B 25 24.20  56 350  3500 N/A N/A        
KPM75B KPB75B 20 20.16  71 350  3230 N/A N/A        
KPM75B KPB75B 15 15.88  93 350  2950 N/A N/A        
KPM75B KPB75B 12.5 12.49  113 350  2770 N/A N/A N/A      
KPM75B KPB75B 10 9.84  143 350  2550 N/A N/A N/A      
KPM75B KPB75B 7.5 7.48  188 350  2330 N/A N/A N/A      
                         
                         
KPM90..,KPB86..           n1=1400r/min           500Nm
                         
Model i i n2 M2max Fr2 63B5 71B5 80B5/B14 90B5/B14 100B5/B14 112B5/B14
nominal actual [r/min] [Nm] [N]
3 Stage
KPM90C KPB86C 300 297.21  4.8 450  6500     N/A N/A N/A N/A
KPM90C KPB86C 250 240.89  5.9 450  6500       N/A N/A N/A
KPM90C KPB86C 200 200.66  7.0  450  6500       N/A N/A N/A
KPM90C KPB86C 150 151.20  9.3 500  6500       N/A N/A N/A
KPM90C KPB86C 125 125.95  12 500  5980       N/A N/A N/A
KPM90C KPB86C 100 99.22  15 500  5520 N/A       N/A N/A
KPM90C KPB86C 75 75.45  19 500  5040 N/A       N/A N/A
KPM90C KPB86C 60 62.43  23 500  4730 N/A       N/A N/A
KPM90C KPB86C 50 49.18  29 500  4370 N/A       N/A N/A
2 Stage
KPM90B KPB86B 60 59.44  24 450  5890 N/A         N/A
KPM90B KPB86B 50 48.18  30 450  5500 N/A         N/A
KPM90B KPB86B 40 40.13  35 450  5170 N/A N/A        
KPM90B KPB86B 30 30.24  47 500  4710 N/A N/A        
KPM90B KPB86B 25 25.19  56 500  4430 N/A N/A        
KPM90B KPB86B 20 19.84  71 500  4090 N/A N/A N/A      
KPM90B KPB86B 15 15.09  93 500  3730 N/A N/A N/A      
KPM90B KPB86B 12.5 12.49  113 500  3510 N/A N/A N/A      
KPM90B KPB86B 10 9.84  143 500  3240 N/A N/A N/A      
KPM90B KPB86B 7.5 7.48  188 500  2950 N/A N/A N/A      

Outline Dimension:

Company Profile

About our company:
We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.Our leading products is  full range of RV571-150 worm reducers , also supplied hypoid helical gearbox, PC units, UDL Variators and AC Motors.Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and Middle East and so on.Our aim is to develop and innovate on basis of high quality, and create a good reputation for reducers.

 Packing information:Plastic Bags+Cartons+Wooden Cases , or on request
We participate Germany Hannver Exhibition-ZheJiang PTC Fair-Turkey Win Eurasia

Logistics

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc.

FAQ

1.Q:Can you make as per customer drawing?
A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.
2.Q:What is your terms of payment ?
A: 30% deposit before production,balance T/T before delivery.
3.Q:Are you a trading company or manufacturer?
A:We are a manufacurer with advanced equipment and experienced workers.
4.Q:What’s your production capacity?
A:8000-9000 PCS/MONTH
5.Q:Free sample is available or not?
A:Yes, we can supply free sample if customer agree to pay for the courier cost
6.Q:Do you have any certificate?
A:Yes, we have CE certificate and SGS certificate report.

Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

 

 

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right-Angle
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Two Stage-Three Stage
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Role of Helical Gearboxes in Automotive Transmissions

Helical gearboxes play a crucial role in automotive transmissions, contributing to the efficient power transfer and smooth operation of vehicles:

  • Power Transmission: Helical gearboxes are used to transmit power from the engine to the wheels through different gear ratios. They help in converting the high-speed, low-torque output of the engine into the appropriate speed and torque for the wheels.
  • Smooth Shifting: In manual and automatic transmissions, helical gears are often used to provide smooth and quiet gear shifts. The gradual engagement of helical gear teeth helps in reducing the shock and noise associated with gear changes.
  • Noise Reduction: Helical gears are known for their quieter operation compared to other gear types. This is especially important in automotive applications where minimizing noise and vibration is desired for a comfortable driving experience.
  • Efficiency: The efficiency of helical gearboxes helps in optimizing fuel efficiency and reducing energy losses. This is crucial for improving the overall performance and economy of vehicles.
  • Load Distribution: Helical gears distribute the load over multiple teeth, reducing wear and ensuring the gearbox’s longevity. This is important in vehicles that experience varying loads and driving conditions.
  • Torque Handling: Helical gears can handle higher torque loads compared to some other gear types. This is essential for vehicles, especially those with powerful engines, towing capabilities, or off-road use.

In modern automotive transmissions, helical gearboxes can be found in various components, including the main transmission, differential, and gearbox synchronizers. They contribute to the smooth operation, improved fuel efficiency, and overall performance of vehicles. The design and arrangement of helical gears can be tailored to meet the specific requirements of different vehicle types, making them a versatile choice for automotive applications.

helical gearbox

Impact of Thermal Expansion on Helical Gearbox Performance

Thermal expansion can significantly affect the performance of helical gearboxes due to changes in dimensions and clearances caused by temperature variations. Here’s how it impacts:

1. Misalignment: Temperature changes can lead to differential expansion of gearbox components. This can result in misalignment of gears, shafts, and bearings, leading to increased friction, noise, and reduced efficiency.

2. Lubrication: Thermal expansion can alter the clearances within the gearbox, affecting the distribution and viscosity of the lubricating oil. Inadequate lubrication due to temperature-induced changes can result in increased wear and premature failure.

3. Gear Tooth Engagement: Temperature fluctuations can cause gear teeth to expand or contract, affecting the meshing engagement and load distribution. Inconsistent gear tooth contact can lead to uneven wear and reduced gear life.

4. Bearing Performance: Bearings in helical gearboxes are sensitive to temperature changes. Excessive heat can lead to reduced bearing life, increased friction, and potential seizure, affecting overall gearbox performance.

5. Noise and Vibration: Thermal expansion can lead to changes in gear and component clearances, resulting in altered vibration patterns and increased noise levels. This can impact the comfort of the system and indicate potential issues.

6. Material Fatigue: Repeated cycles of thermal expansion and contraction can lead to material fatigue and stress accumulation, reducing the overall lifespan of gearbox components.

Managing Thermal Effects: Manufacturers design helical gearboxes with considerations for thermal expansion, using materials with low coefficients of thermal expansion and incorporating features like expansion joints or thermal isolators. Proper lubrication, monitoring temperature, and maintaining consistent operating conditions are also crucial in mitigating thermal expansion effects.

Understanding and managing the impact of thermal expansion is essential to maintain the performance, efficiency, and durability of helical gearboxes.

helical gearbox

Lubrication Requirements for Maintaining Helical Gearboxes

Lubrication is essential for the proper functioning and longevity of helical gearboxes. The lubrication requirements include:

  • Viscosity: Selecting a lubricant with the appropriate viscosity is crucial. The viscosity should provide sufficient lubrication and ensure a protective film between gear teeth under varying operating conditions.
  • Extreme Pressure (EP) Properties: Helical gears often experience high contact pressures. Lubricants with EP additives form a protective barrier that prevents metal-to-metal contact and reduces wear.
  • Oil Additives: Anti-wear additives, antioxidants, and corrosion inhibitors enhance the lubricant’s performance and protect gears from wear and degradation.
  • Frequent Inspections: Regularly inspect the lubricant’s condition to detect contamination, degradation, or depletion. Scheduled oil analysis can help monitor the health of the lubricant.
  • Proper Lubricant Application: Ensure the gearbox is properly filled with the correct amount of lubricant. Follow manufacturer recommendations for lubricant type and quantity.
  • Lubricant Change Intervals: Establish regular lubricant change intervals based on operating conditions. Extreme conditions or heavy loads may require more frequent changes.

Appropriate lubrication minimizes friction, wear, and heat generation, leading to improved efficiency, reduced maintenance, and extended gearbox life. It’s crucial to follow the manufacturer’s guidelines and consult with lubrication experts to select the right lubricant and maintenance practices for your specific helical gearbox application.

China manufacturer Replacement of Motovario Nmrv High Precision Transmission Helical Gear Box   with high quality China manufacturer Replacement of Motovario Nmrv High Precision Transmission Helical Gear Box   with high quality
editor by CX 2023-09-18

China Standard Zlyj146 173 225 250 Gear Box Helical Reducer High Torque Transmission Parts Gearbox for Plastic Screw Extruder Screw manufacturer

Product Description

Product Description

ZLYJ  gearbox series are transmission devices, which are specially designed for single-screw extruder with high precision, hard gear surface, accompany with thrust. Adopting the technical specifications stipulated in JB/T9050. 1-1999, all CZPT gearboxes are designed accordingly.

 

Product Parameters

 

Detailed Photos

Machine Parts 

Name: High Quality CZPT Gearbox 

Original: China Gear material: high alloy steel low carbon (20CrMnTi)The interface is hardened, precision-ground and hard-chrome-plated to 870HV hardness and Ra 0.8-1.6µm roughness, so the shaft-seal is super hard, resists wear and corrosion, and very durable.

Main Features 

Made of carburizing steel (Forging), go through normalization heat treatment for forged carburizing steel; and gear faces are also nitride-treated to at least 60HRC hardness for optimal rigidity and carburizing depth 0.8-1.1MM and wear resistance.

Single Screw Extruder Gearbox

Our CZPT gearbox for single screw extruder adopts high strength alloy steel material and the gear is of high accuracy. It is less
noisy, work quietly and smoothly. So it is a longer service life.

Gearbox casting body

1. we prepare enough casting body in our workshop to guarantee the delivery time.
2. this is our new gearbox casting body design.
3. fast delivery time and high quality

Heat treatment furnace

 

We have own heat treatment for the gears and gearshaft, so it’s easy for us to control the quality and the quality is more gurantee.

 

Packaging & Shipping

1)Packing: Wrapped up by film in wooden cases

2)Port Departure: HangZhou Port

3)Delivery time: 25 working days CZPT receipt of 30% deposit(days based on your quantity)

We use strong plywood or wooden case for all our products.

FAQ

Q1. Are you a trading company or a manufacturer?
We are a BSCI&ISO-9001 certificated manufacturer.

Q2. Can I place the customized order for different sizes, colors, materials,packings….?
Yes, all the customized orders are welcomed.

Q3. Could I get a QC report before delivery?
Yes, the specific QC reports will be sent to you before delivery.

Q4. Can I get a lower price if I place a larger order?
Yes, the price will be modified according to your order quantities.

 

helical gearbox

Can Helical Gearboxes Be Retrofitted into Existing Machinery Designs?

Yes, helical gearboxes can often be retrofitted into existing machinery designs, providing an opportunity to upgrade the performance, efficiency, and reliability of older equipment. Here are the key points to consider when retrofitting helical gearboxes:

1. Compatibility: Before proceeding with a retrofit, it’s essential to ensure that the new helical gearbox is compatible with the existing machinery in terms of size, mounting, and shaft connections. Proper measurements and analysis are necessary to avoid any misalignment or fitment issues.

2. Space Considerations: Helical gearboxes may have a different physical profile compared to the original gearboxes. Engineers need to assess the available space in the machinery and confirm that the new gearbox will fit without major modifications.

3. Shaft Alignment: Proper shaft alignment is crucial to ensure smooth and efficient operation. During the retrofit, it’s important to align the new helical gearbox with other components in the system to prevent premature wear, noise, and vibration.

4. Power and Torque Ratings: The power and torque ratings of the helical gearbox should match or exceed the requirements of the machinery. This ensures that the new gearbox can handle the loads and stresses that the machinery may encounter.

5. Performance Improvements: Retrofitting with helical gearboxes can lead to improved efficiency, reduced noise, and smoother operation. These benefits can positively impact the overall performance and lifespan of the machinery.

6. Engineering Expertise: Retrofitting involves careful planning, engineering analysis, and implementation. Working with experienced engineers or gearbox specialists is advisable to ensure a successful retrofit without compromising the integrity of the machinery.

7. Cost-Benefit Analysis: Assessing the costs of the retrofit, including the cost of the new gearbox, installation, downtime, and potential modifications, is essential. Comparing these costs to the anticipated benefits of improved performance and efficiency will help make an informed decision.

8. Maintenance Considerations: Retrofitting may also impact maintenance practices. It’s important to understand any changes in lubrication requirements, inspection intervals, and servicing needs that come with the new gearbox.

Conclusion: Retrofitting helical gearboxes into existing machinery designs can be a cost-effective way to enhance the performance and extend the lifespan of equipment. However, careful planning, engineering analysis, and professional expertise are crucial to ensure a successful retrofit that delivers the desired improvements without causing unforeseen issues.

Heat Treatment: Carburising/Quenching/Gear Griding
Gearing Arrangement: Helical
Advantage: Low MOQ, High Quality
Gear Accuray: Less Than 6
Gear Material: Low Carbon High Alloy Steel
Mount Postion: Horizonal or Vertical
Customization:
Available

|

Customized Request

helical gearbox

Differences Between Helical Gearboxes and Spur Gearboxes

Helical gearboxes and spur gearboxes are two common types of gearboxes used in various applications. Here are the key differences between them:

  • Tooth Desihelical gearbox

    Precision and High-Accuracy Applications of Helical Gearboxes

    Helical gearboxes are well-suited for precision and high-accuracy applications due to their unique design and performance characteristics:

    • Helical Gearing: The helical gears in these gearboxes offer smooth and continuous meshing, resulting in reduced backlash and improved positioning accuracy.
    • Efficiency: Helical gearboxes are known for their high efficiency, which minimizes energy losses and heat generation. This is crucial for maintaining precision in applications where even small deviations can have significant impacts.
    • Noise and Vibration: The helical gear tooth engagement helps in reducing noise and vibration levels, making them suitable for environments where quiet operation is required.
    • Load Distribution: Helical gears distribute load across multiple teeth, minimizing localized wear and extending the lifespan of the gearbox.
    • Smooth Motion: Helical gearboxes provide smoother motion transitions, which is crucial in precision applications where jerky or sudden movements are undesirable.
    • Positional Accuracy: The reduced backlash and improved meshing characteristics of helical gears contribute to higher positional accuracy, making these gearboxes ideal for applications such as CNC machines, robotics, and medical equipment.
    • Compact Design: Helical gearboxes can achieve high gear ratios in a relatively compact form factor, making them suitable for applications where space is limited.

    Examples of precision applications where helical gearboxes are commonly used include CNC machining, robotics, semiconductor manufacturing, medical equipment, and metrology devices. The combination of efficiency, smooth operation, and accuracy makes helical gearboxes a preferred choice for achieving consistent and reliable performance in such applications.

    gn: The main difference between helical and spur gearboxes lies in their tooth design. Helical gearboxes feature helical teeth that are cut at an angle to the gear axis, while spur gearboxes have straight-cut teeth that run parallel to the gear axis.

  • Engagement: Helical gearboxes offer a gradual and smooth engagement of teeth due to their helical tooth design. This results in reduced noise and vibration compared to spur gearboxes, which can have more abrupt and noisy tooth engagement.
  • Load Distribution: Helical gearboxes have a higher contact ratio between teeth at any given time, which leads to better load distribution across the gear teeth. Spur gearboxes, on the other hand, have fewer teeth in contact at a time, potentially leading to higher stress on individual teeth.
  • Efficiency: Helical gearboxes tend to be more efficient than spur gearboxes due to the helical tooth design, which reduces friction and energy losses during gear meshing. The gradual engagement of helical teeth contributes to this higher efficiency.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to spur gearboxes. The helical tooth design and smooth engagement help in reducing the impact of gear meshing on overall noise levels.
  • Applications: Helical gearboxes are commonly used in applications that require higher torque and smoother operation, such as heavy machinery, automotive transmissions, and industrial equipment. Spur gearboxes are suitable for applications with moderate loads and where noise considerations are not critical.

Overall, helical gearboxes offer advantages in terms of efficiency, load distribution, and noise reduction compared to spur gearboxes. However, the choice between the two depends on specific application requirements and factors such as torque, speed, space constraints, and noise considerations.

China Standard Zlyj146 173 225 250 Gear Box Helical Reducer High Torque Transmission Parts Gearbox for Plastic Screw Extruder Screw   manufacturer China Standard Zlyj146 173 225 250 Gear Box Helical Reducer High Torque Transmission Parts Gearbox for Plastic Screw Extruder Screw   manufacturer
editor by CX 2023-08-16