Tag Archives: k series gear motors

China Good quality K Series Helical Bevel Gear Box Reduction Gearbox with Motors with Good quality

Product Description

China K Series Spiral Bevel Geared Reducer for Electric Motor

Components:
1. Housing: Cast Iron
2. Gears: Helical-bevel Gears
3. Input Configurations: Equipped with Electric Motors, CZPT Shaft Input, IEC-normalized Motor Flange
4. Applicable Motors: Single Phase AC Motor, Three Phase AC Motor, Brake Motors, Inverter Motors,
Multi-speed Motors, Explosion-proof Motor, Roller Motor
5. Output Configurations: CZPT Shaft Output, Hollow Shaft Output

Models:
K Series – Foot-mounted, CZPT shaft output
KAB Series – Foot-mounted, hollow shaft output
KA Series – Keyed hollow shaft output
KF Series – B5 Flange-mounted, CZPT shaft output
KAF Series – B5 Flange-mounted, hollow shaft output
KAZ Series – B14 Flange-mounted, hollow shaft output
KAT Series – Hollow shaft output, torque arm
KH, KHB, KHF, KHZ Series – Hollow shaft output, shrink disk
KV, KVB, KVF, KVZ Series – Hollow shaft output, splined hollow shaft
K(KA, KF, KAF, KAB, KAZ)S Series – CZPT shaft input

Product Advantages

K series gearbox is 1 kind of Helical Bevel type gearbox , High-stainless cast iron case,it is designed based on modularization,which bring many difference kinds of combinations ,mounting types ,and structure designs.

 

Product Name

K Series Helical Bevel Geared Motor speed reducer 3kw 4kw 5.5kw 7.5kw 11kw 15kw

Output configuration

solid shaft, splined shaft

Mounted form

foot-mounted and flange-mounted mounting

Efficiency

High power density

Model

GK,GKF,GKA,GKAF,GKAZ,GKHF,GK37~GK187 etc.

Technology

CNC grinding technology

Application areas

Metallurgical machinery, food machinery,logistics and transportation and so on.

R series reducer has the characteristics of small volume and large torque transmission. It is designed and manufactured on the basis of modular combination system. There are many motor combinations,installation forms and structural schemes. R series reducer adopts the modular design principle of unit structure, with high transmission efficiency, low energy consumption and superior performance.

Product Description

 

Features of product

 

 

1.High transmission efficiency, stable operation, low noise
2.long service life, high bearing capacity

 

3.The ratio can meet various of working condition

4.Superior performance. Hard tooth surface gear use the       high quality alloy steel.

 

 

Detailed Photos

Product Parameters

 

Models

Output Shaft Dia.

Input Shaft Dia.

Power(kW)

Ratio

Max. Torque(Nm)

Solid Shaft

Hollow Shaft

K38

25mm

30mm

16mm

0.18~3.0

5.36~106.38

200

K48

30mm

35mm

19mm

0.18~3.0

5.81~131.87

400

K58

35mm

40mm

19mm

0.18~5.5

6.57~145.15

600

K68

40mm

40mm

19mm

0.18~5.5

7.14~144.79

820

K78

50mm

50mm

24mm

0.37~11

7.22~192.18

1550

K88

60mm

60mm

28mm

0.75~22

7.19~197.27

2700

K98

70mm

70mm

38mm

1.3~30

8.95~175.47

4300

K108

90mm

90mm

42mm

3~45

8.74~141.93

8000

K128

110mm

100mm

55mm

7.5~90

8.68~146.07

13000

K158

120mm

120mm

70mm

11~160

12.66~150.03

18000

K168

160mm

140mm

70mm

11~200

17.35~164.44

32000

K188

190mm

160mm

70mm

18.5~200

17.97~178.37

50000

Our Advantages

Application: Motor, Motorcycle, Machinery, Agricultural Machine
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Expansion, Parallel
Gear Shape: Bevel Gear
Step: Single-Step
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Role of Helical Gearboxes in Automotive Transmissions

Helical gearboxes play a crucial role in automotive transmissions, contributing to the efficient power transfer and smooth operation of vehicles:

  • Power Transmission: Helical gearboxes are used to transmit power from the engine to the wheels through different gear ratios. They help in converting the high-speed, low-torque output of the engine into the appropriate speed and torque for the wheels.
  • Smooth Shifting: In manual and automatic transmissions, helical gears are often used to provide smooth and quiet gear shifts. The gradual engagement of helical gear teeth helps in reducing the shock and noise associated with gear changes.
  • Noise Reduction: Helical gears are known for their quieter operation compared to other gear types. This is especially important in automotive applications where minimizing noise and vibration is desired for a comfortable driving experience.
  • Efficiency: The efficiency of helical gearboxes helps in optimizing fuel efficiency and reducing energy losses. This is crucial for improving the overall performance and economy of vehicles.
  • Load Distribution: Helical gears distribute the load over multiple teeth, reducing wear and ensuring the gearbox’s longevity. This is important in vehicles that experience varying loads and driving conditions.
  • Torque Handling: Helical gears can handle higher torque loads compared to some other gear types. This is essential for vehicles, especially those with powerful engines, towing capabilities, or off-road use.

In modern automotive transmissions, helical gearboxes can be found in various components, including the main transmission, differential, and gearbox synchronizers. They contribute to the smooth operation, improved fuel efficiency, and overall performance of vehicles. The design and arrangement of helical gears can be tailored to meet the specific requirements of different vehicle types, making them a versatile choice for automotive applications.

helical gearbox

Safety Precautions for Operating Machinery with Helical Gear Systems

When operating machinery equipped with helical gear systems, it’s crucial to prioritize safety to prevent accidents and ensure the well-being of operators and equipment. Here are the key safety precautions to consider:

  • Training and Familiarity: Operators should receive proper training on the equipment’s operation, including the helical gear system. They should be familiar with the controls, emergency procedures, and potential hazards.
  • Protective Gear: Operators should wear appropriate personal protective equipment (PPE), such as gloves, safety glasses, helmets, and ear protection, depending on the application’s requirements.
  • Lockout/Tagout: Before performing maintenance or repairs, follow lockout/tagout procedures to isolate the machinery from its power source and prevent accidental startup.
  • Regular Inspections: Conduct routine inspections of the helical gear system and other machinery components to identify signs of wear, damage, or malfunction. Address any issues promptly to avoid unsafe conditions.
  • Proper Lubrication: Ensure the helical gear system is adequately lubricated according to manufacturer recommendations. Proper lubrication reduces friction, wear, and heat buildup, enhancing both performance and safety.
  • Emergency Stop: Machinery should be equipped with clearly marked emergency stop buttons or switches that operators can use to halt operations immediately in case of an emergency.
  • Cleaning and Housekeeping: Maintain a clean work environment by removing debris, oil spills, and other potential hazards. Good housekeeping minimizes slip and trip hazards and promotes safe operation.
  • Load Capacity: Adhere to the recommended load capacities specified by the manufacturer for both the helical gear system and the machinery as a whole. Overloading can lead to accelerated wear and potential failures.
  • Avoid Loose Clothing: Operators should avoid wearing loose clothing, jewelry, or other items that could become entangled in the machinery, leading to accidents.
  • Safe Working Distances: Establish safe working distances from moving parts of the machinery, including the helical gear system, to prevent accidental contact and ensure operator safety.
  • Regular Maintenance: Follow the manufacturer’s maintenance schedule and guidelines for the helical gear system. Regular maintenance reduces the risk of unexpected failures and promotes safe and reliable operation.

Prioritizing safety when operating machinery with helical gear systems is essential to prevent accidents, protect operators, and maintain efficient operations. Following these precautions and promoting a safety-conscious culture can significantly contribute to a safe working environment.

helical gearbox

Helical Gearbox: Overview and Working Mechanism

A helical gearbox is a type of mechanical device used to transmit power and motion between rotating shafts. It employs helical gears, which are cylindrical gears with teeth that are cut at an angle to the gear axis. This design feature gives helical gearboxes their distinctive helical shape and provides several advantages in terms of efficiency, smoothness, and load-bearing capabilities.

The working mechanism of a helical gearbox involves the interaction of helical gears, which mesh together to transmit torque and motion. Here’s how it works:

  1. Gear Tooth Engagement: When power is applied to the input shaft of the gearbox, the helical gear on the input shaft meshes with the helical gear on the output shaft.
  2. Helical Angle: The helical angle of the gear teeth causes a gradual engagement between the teeth, resulting in a smooth and quiet meshing process compared to straight-cut gears.
  3. Torque Transfer: As the input gear rotates, it transfers rotational force (torque) to the output gear through the meshing of their helical teeth.
  4. Direction of Rotation: Depending on the arrangement of the helical gears, the output shaft’s direction of rotation can be the same as or opposite to that of the input shaft.
  5. Load Distribution: The helical design allows for multiple teeth to be engaged at any given moment, distributing the load more evenly across the gears. This results in higher load-carrying capacity and reduced wear on gear teeth.
  6. Efficiency: Helical gearboxes are known for their high efficiency due to the gradual tooth engagement and larger contact area, resulting in minimal energy loss as compared to other gear types.

Helical gearboxes find applications in various industries where smooth operation, high efficiency, and compact design are important. They are commonly used in machinery, conveyors, automotive transmissions, industrial equipment, and more.

China Good quality K Series Helical Bevel Gear Box Reduction Gearbox with Motors   with Good quality China Good quality K Series Helical Bevel Gear Box Reduction Gearbox with Motors   with Good quality
editor by CX 2023-11-02

China Jiangyin Gearbox R K F S Series Helical Gear Motors manufacturer

Product Description

HangZhou Gearbox R K F S Series Helical Gear Motors

Company Information
     HangZhou Gearbox Manufacturing Co., Ltd. registered in 1979. The company is located at national high-tech development zone, HangZhou, ZheJiang , China, with more than 38 years experience to specialize in reserch and development gear transmission products. The factory covers an area of 87,000 square meters. The company has passed ISO9001 quality system certification in 1999, and was rated as high qualified R&D engineer teem and manufacturing talents as well as first-class processing and testing equipments.

Specifications
1. Characterized by compact structure, light weight, large torque and excellent performance, it’s a new reducing transmission system with advanced design and manufactured on the basis of the modularized combination, which can meet client’s requirement on connection and installation.
2. Made of rib-reinforced rigid case, premium alloy-steel gear that’s hardened by carbon penetration and grinded precisely, it has stable running, low noise, large loading capacity, low consumption, efficient transmission temperature rise and long service life etc.

Packaging & Shipping
Equipment

Patent Certificate

FAQ
 Are you trading company or manufacturer ?
A: We are manufacturer with 38 years experience.
Q: How long is your delivery time?
A: Generally it is within 10 days if the goods are in stock, for goods produced as per order, it is within 35 days after confirmation of order.
Q:How long should I wait for the feedback after I send the enquiry?
A: Normally Within 12 hours.
Q:What information should I give you to confirm the product?
A: Model/Size, Transmission Ratio, Speed, Shaft directions & Order quantity etc.
Q: Hong long is your product warranty?
A:We offer 12 months warranty from departure date of the goods.
Q: What is your payment terms?
 T/T 100% in advance for amount less than USD10000.-, 30% T/T in advance ,balance before shipment for amount above USD10000.-
  If you have any other questions, please feel free to contact us below:
Contact Us

US $100-1,000
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Change Drive Torque, Speed Changing, Speed Reduction, Speed Increase
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Single-Step

###

Customization:
US $100-1,000
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Machinery, Marine, Agricultural Machinery
Function: Change Drive Torque, Speed Changing, Speed Reduction, Speed Increase
Layout: Cycloidal
Hardness: Hardened Tooth Surface
Installation: Torque Arm Type
Step: Single-Step

###

Customization:

How to Select a Gearbox

When you drive your vehicle, the gearbox provides you with traction and speed. The lower gear provides the most traction, while the higher gear has the most speed. Selecting the right gear for your driving conditions will help you maximize both. The right gearing will vary based on road conditions, load, and speed. Short gearing will accelerate you more quickly, while tall gearing will increase top speed. However, you should understand how to use the gearbox before driving.
gearbox

Function

The function of the gearbox is to transmit rotational energy to the machine’s drive train. The ratio between input and output torque is the ratio of the torque to the speed of rotation. Gearboxes have many different functions. A gearbox may have multiple functions or one function that is used to drive several other machines. If one gear is not turning, the other will be able to turn the gearbox. This is where the gearbox gets its name.
The pitch-controlled system has an equal number of failure modes as the electrical system, accounting for a large proportion of the longest machine downtime and halt time. The relationship between mechanisms and faults is not easily modeled mathematically. Failure modes of gearboxes are shown in Fig. 3. A gearbox’s true service life is six to eight years. However, a gearbox’s fault detection process must be developed as mature technology is required to reduce the downtime and avoid catastrophic incidents.
A gearbox is a vital piece of machinery. It processes energy produced by an engine to move the machine’s parts. A gearbox’s efficiency depends on how efficiently it transfers energy. The higher the ratio, the more torque is transferred to the wheels. It is a common component of bicycles, cars, and a variety of other devices. Its four major functions include:
In addition to ensuring gearbox reliability, a gearbox’s maintainability should be evaluated in the design phase. Maintainability considerations should be integrated into the gearbox design, such as the type of spare parts available. An appropriate maintenance regime will also determine how often to replace or repair specific parts. A proper maintenance procedure will also ensure that the gearbox is accessible. Whether it is easy to access or difficult to reach, accessibility is essential.

Purpose

A car’s transmission connects the engine to the wheels, allowing a higher-speed crankshaft to provide leverage. High-torque engines are necessary for the vehicle’s starting, acceleration, and meeting road resistance. The gearbox reduces the engine’s speed and provides torque variations at the wheels. The transmission also provides reversing power, making it possible to move the vehicle backwards and forwards.
Gears transmit power from one shaft to another. The size of the gears and number of teeth determine the amount of torque the unit can transmit. A higher gear ratio means more torque, but slower speed. The gearbox’s lever moves the engaging part on the shaft. The lever also slides the gears and synchronizers into place. If the lever slips to the left or right, the engine operates in second gear.
Gearboxes need to be closely monitored to reduce the likelihood of premature failure. Various tests are available to detect defective gear teeth and increase machine reliability. Figure 1.11(a) and (b) show a gearbox with 18 teeth and a 1.5:1 transmission ratio. The input shaft is connected to a sheave and drives a “V” belt. This transmission ratio allows the gearbox to reduce the speed of the motor, while increasing torque and reducing output speed.
When it comes to speed reduction, gear box is the most common method for reducing motor torque. The torque output is directly proportional to the volume of the motor. A small gearbox, for example, can produce as much torque as a large motor with the same output speed. The same holds true for the reverse. There are hybrid drives and in-line gearboxes. Regardless of the type, knowing about the functions of a gearbox will make it easier to choose the right one for your specific application.
gearbox

Application

When selecting a gearbox, the service factor must be considered. Service factor is the difference between the actual capacity of the gearbox and the value required by the application. Additional requirements for the gearbox may result in premature seal wear or overheating. The service factor should be as low as possible, as it could be the difference between the lifetime of the gearbox and its failure. In some cases, a gearbox’s service factor can be as high as 1.4, which is sufficient for most industrial applications.
China dominates the renewable energy industry, with the largest installed capacity of 1000 gigawatts and more than 2000 terawatt hours of electricity generated each year. The growth in these sectors is expected to increase the demand for gearboxes. For example, in China, wind and hydropower energy production are the major components of wind and solar power plants. The increased installation capacity indicates increased use of gearboxes for these industries. A gearbox that is not suitable for its application will not be functional, which may be detrimental to the production of products in the country.
A gearbox can be mounted in one of four different positions. The first three positions are concentric, parallel, or right angle, and the fourth position is shaft mount. A shaft mount gearbox is typically used in applications where the motor can’t be mounted via a foot. These positions are discussed in more detail below. Choosing the correct gearbox is essential in your business, but remember that a well-designed gearbox will help your bottom line.
The service factor of a gearbox is dependent on the type of load. A high shock load, for example, can cause premature failure of the gear teeth or shaft bearings. In such cases, a higher service factor is required. In other cases, a gearbox that is designed for high shock loads can withstand such loads without deteriorating its performance. Moreover, it will also reduce the cost of maintaining the gearbox over time.

Material

When choosing the material for your gearbox, you must balance the strength, durability, and cost of the design. This article will discuss the different types of materials and their respective applications and power transmission calculations. A variety of alloys are available, each of which offers its own advantages, including improved hardness and wear resistance. The following are some of the common alloys used in gears. The advantage of alloys is their competitive pricing. A gear made from one of these materials is usually stronger than its counterparts.
The carbon content of SPCC prevents the material from hardening like SS. However, thin sheets made from SPCC are often used for gears with lower strength. Because of the low carbon content, SPCC’s surface doesn’t harden as quickly as SS gears do, so soft nitriding is needed to provide hardness. However, if you want a gear that won’t rust, then you should consider SS or FCD.
In addition to cars, gearboxes are also used in the aerospace industry. They are used in space travel and are used in airplane engines. In agriculture, they are used in irrigation, pest and insect control machinery, and plowing machines. They are also used in construction equipment like cranes, bulldozers, and tractors. Gearboxes are also used in the food processing industry, including conveyor systems, kilns, and packaging machinery.
The teeth of the gears in your gearbox are important when it comes to performance. A properly meshing gear will allow the gears to achieve peak performance and withstand torque. Gear teeth are like tiny levers, and effective meshing reduces stress and slippage. A stationary parametric analysis will help you determine the quality of meshing throughout the gearing cycle. This method is often the most accurate way to determine whether your gears are meshing well.
gearbox

Manufacturing

The global gear market is divided into five key regions, namely, North America, Europe, Asia Pacific, and Latin America. Among these regions, Asia Pacific is expected to generate the largest GDP, owing to rapidly growing energy demand and investments in industrial infrastructure. This region is also home to some of the largest manufacturing bases, and its continuous building of new buildings and homes will support the industry’s growth. In terms of application, gearboxes are used in construction, agricultural machinery, and transportation.
The Industrial Gearbox market is anticipated to expand during the next several years, driven by the rapid growth of the construction industry and business advancements. However, there are several challenges that hamper the growth of the industry. These include the high cost of operations and maintenance of gear units. This report covers the market size of industrial gearboxes globally, as well as their manufacturing technologies. It also includes manufacturer data for the period of 2020-2024. The report also features a discussion of market drivers and restraints.
Global health crisis and decreasing seaborne commerce have moderately adverse effects on the industry. Falling seaborne commerce has created a barrier to investment. The value of international crude oil is expected to cross USD 0 by April 2020, putting an end to new assets development and exploitation. In such a scenario, the global gearbox market will face many challenges. However, the opportunities are huge. So, the market for industrial gearboxes is expected to grow by more than 6% by 2020, thanks to the increasing number of light vehicles sold in the country.
The main shaft of a gearbox, also known as the output shaft, spins at different speeds and transfers torque to an automobile. The output shaft is splined so that a coupler and gear can be connected to it. The counter shaft and primary shaft are supported by bearings, which reduce friction in the spinning element. Another important part of a gearbox is the gears, which vary in tooth count. The number of teeth determines how much torque a gear can transfer. In addition, the gears can glide in any position.

China Jiangyin Gearbox R K F S Series Helical Gear Motors     manufacturer China Jiangyin Gearbox R K F S Series Helical Gear Motors     manufacturer
editor by czh 2022-11-28