China S Series Helical Worm Variable Speed Gear Box with Motor electric motor helical gearbox

Item Description

 S Series Helical Worm Variable Speed Equipment Box with Motor

1. Product Traits
S series helical worm gearbox adopts the helical worm gears to make its construction much more affordable. S series not only has greater transmission efficency and loading ability than people single-stage worm wheel transmission, but also smaller volume and appearance. Additionally, S series worm gearbox has higher transmission ratio, and can be mixed with different gearboxes and speed variators to fulfill the various requirements.

two. Technical Data

Rated Electricity      
                     0.eighteen~22KW
Output Speed    
                     0.16~147r/min
Output Torque                                                                                                      90~4000N.m
Mounted Type Foot-mounted, flange mounted, shaft-mounted, torque arm mounted
Housing                                                                                                   Aluminum and Casting Iron

 3. Structure
S series gearbox are offered in the adhering to styles:
(1) SY  Foot mounted helical worm gearbox with strong shaft

(2) SAY  Helical worm gearbox with hollow shaft

(3) SAZY  Small flange mounted helical worm gearbox with hollow shaft

(4) SA (S,SF,SAF,SAZ)Y  Assemble users’ motor or specific motor, flange is necessary

(5) SFY  Flange mounted helical worm gearbox with sound shaft

(6) SAFY  Flange mounted helical worm gearbox with hollow shaft

(7) SATY  Torque arm mounted helical worm gearbox with hollow shaft

(8) S (SF,SA,SAF,SAZ) S  Shaft input helical worm gearbox

(9) SA (S,SF,SAF,SAZ)RY  Combined helical worm gearbox

(10) SA (S,SF,SAF,SAZ)SR  Shaft enter blended helical worm gearbox

4. Detailed parameters

   Size 38 48 58 68 78 88 98
  Structure                                           S SA SF SAF SAT SAZ
   Input Energy(KW) .18-.75 .18-1.five .eighteen-3 .twenty five-5.5 .55-7.five .75-15 one.5-22
Ratio ten.27-152 eleven.46-244.74 ten.78-196.21 11.55-227.20 nine.ninety six-241.09 eleven.eighty three-222 twelve.75-230.48
Greatest torque(N.m) ninety one hundred seventy 295 520 1270 2280 4000

five.Item Pictures:

six.Our firm :
AOKMAN was started in 1982, which has a lot more than 36 a long time in R & D and production of gearboxes, gears, shaft, motor and spare components.
We can offer you the appropriate remedy for uncountable applications. Our merchandise are extensively used in the ranges of metallurgical, steel, mining, pulp and paper, sugar and alcohol market place and different other types of devices with a strong presence in the international market place.
AOKMAN has turn out to be a reliable supplier, CZPT to provide higher quality gearboxes.With 36 a long time knowledge, we assure you the utmost reliability and security for equally product and providers.

seven.Client going to:

eight.Our Companies:

Pre-sale services one. Pick products model.
two.Design and style and manufacture goods according to clients’ unique requirement.
three.Teach technological personal for clients
Services throughout selling 1.Pre-check and accept goods ahead of supply.
two. Support consumers to draft solving strategies.
After-sale providers 1.Support clientele to put together for the very first building plan.
two. Teach the 1st-line operators.
three.Just take initiative to remove the problems speedily.
4. Provide specialized exchanging.

9.FAQ:
one.Q:What sorts of gearbox can you produce for us?
A:Principal merchandise of our firm: UDL sequence velocity variator,RV collection worm equipment reducer, ATA sequence shaft mounted gearbox, X,B sequence equipment reducer,
P series planetary gearbox and R, S, K, and F series helical-tooth reducer, much more
than 1 hundred versions and hundreds of specifications
2.Q:Can you make as for each custom drawing?
A: Sure, we offer you personalized support for consumers.
3.Q:What is your phrases of payment ?
A: thirty% Advance payment by T/T right after signing the agreement.70% before shipping
4.Q:What is your MOQ?
A: 1 Set

If you have any demand from customers for our goods make sure you truly feel free to contact me. 

US $500-3,000
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Reducer
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Right Angle
Hardness: Hardened
Type: Worm and Wormwheel
Output Torque: 90~4000n.M

###

Customization:

###

Rated Power      
                     0.18~22KW
Output Speed    
                     0.16~147r/min
Output Torque                                                                                                      90~4000N.m
Mounted Form Foot-mounted, flange mounted, shaft-mounted, torque arm mounted
Housing                                                                                                   Aluminum and Casting Iron

###

   Size 38 48 58 68 78 88 98
  Structure                                           S SA SF SAF SAT SAZ
   Input Power(KW) 0.18-0.75 0.18-1.5 0.18-3 0.25-5.5 0.55-7.5 0.75-15 1.5-22
Ratio 10.27-152 11.46-244.74 10.78-196.21 11.55-227.20 9.96-241.09 11.83-222 12.75-230.48
Maximum torque(N.m) 90 170 295 520 1270 2280 4000

###

Pre-sale services 1. Select equipment model.
2.Design and manufacture products according to clients’ special requirement.
3.Train technical personal for clients
Services during selling 1.Pre-check and accept products ahead of delivery.
2. Help clients to draft solving plans.
After-sale services 1.Assist clients to prepare for the first construction scheme.
2. Train the first-line operators.
3.Take initiative to eliminate the trouble rapidly.
4. Provide technical exchanging.
US $500-3,000
/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery, Reducer
Function: Change Drive Torque, Speed Changing, Speed Reduction
Layout: Right Angle
Hardness: Hardened
Type: Worm and Wormwheel
Output Torque: 90~4000n.M

###

Customization:

###

Rated Power      
                     0.18~22KW
Output Speed    
                     0.16~147r/min
Output Torque                                                                                                      90~4000N.m
Mounted Form Foot-mounted, flange mounted, shaft-mounted, torque arm mounted
Housing                                                                                                   Aluminum and Casting Iron

###

   Size 38 48 58 68 78 88 98
  Structure                                           S SA SF SAF SAT SAZ
   Input Power(KW) 0.18-0.75 0.18-1.5 0.18-3 0.25-5.5 0.55-7.5 0.75-15 1.5-22
Ratio 10.27-152 11.46-244.74 10.78-196.21 11.55-227.20 9.96-241.09 11.83-222 12.75-230.48
Maximum torque(N.m) 90 170 295 520 1270 2280 4000

###

Pre-sale services 1. Select equipment model.
2.Design and manufacture products according to clients’ special requirement.
3.Train technical personal for clients
Services during selling 1.Pre-check and accept products ahead of delivery.
2. Help clients to draft solving plans.
After-sale services 1.Assist clients to prepare for the first construction scheme.
2. Train the first-line operators.
3.Take initiative to eliminate the trouble rapidly.
4. Provide technical exchanging.

Helical Gearbox

Using a helical gearbox can greatly improve the accuracy of a machine and reduce the effects of vibration and shaft axis impact. A gearbox is a circular machine part that has teeth that mesh with other teeth. The teeth are cut or inserted and are designed to transmit speed and torque.helical gearbox

Sliding

Among the many types of gearboxes, the helical gearbox is the most commonly used gearbox. This is because the helical gearbox has a sliding contact. The contact between two gear teeth begins at the beginning of one tooth and progresses to line contact as the gear rotates.
Helical gears are cylindrical gears with teeth cut at an angle to the axis. This angle enables helical gears to capture the velocity reversal at the pitch line due to the sliding friction. This leads to a much smoother motion and less wear. Moreover, the helical gearbox is more durable and quieter than other gearboxes.
Helical gears are divided into two categories. The first group comprises of crossed-axis helical gears, commonly used in automobile engine distributor/oil pump shafts. The second group comprises of zero-helix-angle gears, which do not produce axial forces. However, they do create heat, which causes loss of efficiency.
The helical gearbox configuration is often confounded, which results in higher working costs. In addition, the helical gearbox configuration does not have the same torque/$ ratio as zero-helix angle planetary gears.
When designing gears, it is important to consider the effects of gear sliding. Sliding can lead to friction, which can cause loss of power transmission. It also leads to uneven load distribution, which decreases the loadability of the helical planetary gearbox.
In addition, the mesh stiffness of helical gears is commonly ignored by researchers. An analytical model for the mesh stiffness of helical gears has been proposed.

Axial thrust forces

Several options are available for axial thrust forces in helical gearboxes. The most obvious is to use a double helical gear to offset the force component. Another option is to use a thrust bearing with a lower load carrying capacity. This becomes a sacrificial component.
In order to transmit a force, it must be distributed along the contact line. This force is the sum of tangential, radial and axial force components. All these components must be transferred from the source to the output. This is a complex process that involves the use of gears.
The axial force component must be transferred through the gears. The resultant force is then divided into orthogonal components and divided into the thrust directions. The radial force component is from the contact point to the driven gear center.
The axial force component is also determined by the size of the gear’s pitch diameter. A larger pitch diameter results in a greater bearing moment. Similarly, a larger gear ratio will produce a higher torque transmission.
It should be noted that the axial force component is only a small part of the total force. The normal force is distributed along the contact line.
The double helical gear is also not a perfect duplicate of the herringbone gear. It has two equal halves. It is used interchangeably with the herringbone gear. It also has the same helix angle.helical gearbox

Reduced impact on the shaft axis

Increasing the helix angle of a gear pair will reduce resonance effects on the shaft axis of a helical gearbox. However, this will not reduce the overall vibration in the gearbox. In fact, it will increase the vibration. This can lead to serious fatigue faults in the drive train.
This is because the helix angle has an effect on the contact line between two teeth. As the helix angle increases, the length of the contact line decreases. In addition, it has an effect on the normal force and curvature radii of the teeth. The pressure angle also affects the curvature radii.
Helical gears have several advantages over spur gears. These advantages include: lower vibration, NVH (noise, vibration and harshness) characteristics, and smooth operation under heavy loads. They also have better torque capability. However, they produce higher friction. They also require unique approaches to control their thrust forces.
The first step in reducing resonance effects is to regulate the meshing frequency of the helical gear stage. This can be done by varying the shift factors in the gear. If the shift factors are too large, then the gear will experience resonance effects. The helix angle is also affected by the gear’s shift factors. It is therefore important to control the gear’s geometry in order to reduce the resonance effects.
Next, the effects of the web structure and rim thickness on the root stress of the gear are examined. These are measured by strain gage. The results indicate that the maximum root stress is obtained when the worst meshing position is reached.

Quieter operation

Compared to spur gears, helical gears are much quieter in operation. This is due to their larger teeth. Aside from this, they have a higher load-carrying capacity. They also run smoother and have a higher speed capability. Helical gears are also a good substitute for spur gears.
The most significant parameter relating to noise reduction is the gear contact ratio. It ranges from below 1 to more than 10 and is determined by the number of teeth intersecting a parallel shaft line at the pith circle. It is also a good indicator of the level of noise reduction that helical gears provide.
In addition, helical gears have a lower impulse flexure than spur gears. This is because the contact point slides along the helical surface of each tooth. This also adds internal damping to the gear system.
While helical gears are less noisy than spur gears, they do have a high level of wear and tear. This can affect the performance of the gear. However, it is possible to improve the smoothness of the tooth surface by grinding. In addition, running the gears in oil can also help improve the smoothness of the tooth surface.
There are many industries that use helical gears. For example, the automotive industry uses them in their transmissions. They also are used in the agricultural industry. They are often used in heavy trucks.
Helical gears are also known to generate less heat and are quieter than other gears. They can also deliver parallel power transfers between parallel or non-parallel shafts.

Improved accuracy

Increasing the accuracy of a helical gearbox is the key to its operation and reliability. The accuracy of the gearbox is dependent on several features. Among the most important are the profile and lead. Moreover, the power requirements of a gear drive should be taken into consideration.
The profile is the most sensitive feature of a helical gear. If the profile is not symmetric, the gear will run with a noisy spur gear. In addition, the profile is also the most sensitive to lead.
A helical gearbox plays a key role in the power transmission of industrial applications. However, the heavy duty operating conditions make it susceptible to a variety of faults.
A helical gearbox’s performance depends on the accuracy of the individual gears. This is accomplished by minimizing the backlash. A common way to reduce backlash is to approach all target positions from a common direction. This approach also reduces transmission noise.
The accuracy of a helical gearbox can be improved by using a flexible electronic gearbox. This can reduce the degree of twist. Moreover, it can increase the accuracy of gear machining.
A helical gearbox with an electronic gearbox can increase the accuracy of twist compensation. It can also improve the linkage between B-axis, C-axis, and Z-axis. Moreover, the electronic gearbox will ensure the linkage relationship between Y-axis, Z-axis, and C-axis.
The accuracy of a helical Gearbox can be improved by calculating the position error of the gear train. Pitch deviation and helix angle deviation are two types of position error.helical gearbox

Reduced vibration

Using helical gearboxes can reduce vibration and noise. These gears are used in a variety of applications, including automotive transmissions. Moreover, these gears are quiet enough to operate in noise-sensitive applications.
Using CZPT software, three different gearbox housing designs are compared. The external dimensions and mass of each design are kept constant, but different quantities of longitudinal and transverse stiffeners are employed. The resulting models are then compared to experimental results. In addition, the free vibration response of these models is analyzed. The results are shown in Fig. 5.
In terms of noise reduction, the cellular model produces the lowest sound pressure level. However, the cross model produces the higher sound level. The cellular model also produces better peak to peak results.
The input-stage gear pair is the power source of the output-stage gear pair. The output-stage gear pair’s vibration is also studied. This includes a phase diagram and a frequency-domain diagram. The influence of the driving torque and the pinion’s velocity on the vibration is studied in a numerical manner. The time evolution of the normal force and the lubricant stiffness is also studied.
The input-stage pinion modification reduces the input-stage gear pair’s vibration. This reduction is achieved by adding dual bearing support to the input shaft.
China S Series Helical Worm Variable Speed Gear Box with Motor     electric motor helical gearboxChina S Series Helical Worm Variable Speed Gear Box with Motor     electric motor helical gearbox
editor by czh 2023-01-20