China Hot selling Zlyj173 Extrusion Machine Speed Reducer Gearbox cvt gearbox

Product Description

Product Description

>Introduction
ZLYJ series Reduction Gearbox (speed reducer) is a transmission part for most single screw extrusion line, wihch also possesses high precision hard gear surface and thrust block designed. Designed with standard ZBJ19009-88, it combines well with most of machines from different suppliers. Also the gear and axis parts are made of high strength alloy steel with surface hardness HRC54~62. In the front end of hollow input axis there is large specification thrust bearing that will bear axial thrust force while the screw is working
 

>Applied Circumstance
1. All kind of extrusion & blowing machinery
2. High speed shaft rotation Speed <1500RPM
3. Working Environment Temp. -40~45°C, with temperature below 0°C, should pre-heat lubrication oil to above 0°C
 

>Major Technical Index
1. Output Speed: 16-100 RPM
2. Output Torque: Max.4300 Nm
3. Motor Power: 5.5-200 Kw
 

>Selection of Gearbox
1. Select speed ratio
e.g. input speed n1=1000rpm, output speed n2=70rpm, ratio i=n1/n2=14.28, should select ratio 14
2. Select model type according to input power
e.g. input power P=26kw, after checking form, 29kw>26kw, most ecomonic should be ZLYJ200
3. Select assemble type
as per actual use, select horizontal or vertical type
4. Calculate axial thrust Fa=π*Ds²*Ps/(4*1000)
e.g. Screw diameter Ds=75mm, Screw pressure Ps=26MPa
Fa=π*Ds²*Ps/(4*1000)=114.8kN
187kN>114.8kN, ZLYJ200 can bear the axial thrust and economic to select
5. Confirm connection size
6. Confirm cooling type

Parameters Concerned

Recommended Products

 

 

EXTRUSION SCREW BARREL         INJECTION SCREW BARREL         TWIN SCREW BARREL

Standard: DIN, GB, JIS
Technics: Forging
Feature: Recycle
Material: Metal
Gearing Arrangement: Helical
Input Speed: 600-1500rpm
Samples:
US$ 2000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Comparison of Helical Gearboxes and Bevel Gearboxes

Helical gearboxes and bevel gearboxes are both widely used for power transmission in various industrial applications. Here’s a comparison of their performance:

  • Gear Meshing: Helical gearboxes use helical gears with inclined teeth that gradually engage, resulting in smoother and quieter operation compared to the more abrupt engagement of straight-cut bevel gears.
  • Efficiency: Helical gearboxes generally offer higher efficiency due to their helical gear design, which distributes loads evenly across the teeth. Bevel gearboxes can have slightly lower efficiency due to the sliding action of gear teeth during engagement.
  • Load Capacity: Helical gearboxes can handle higher loads and torque due to the larger contact area of the gear teeth. Bevel gearboxes are suitable for moderate loads and applications where the direction of power transmission needs to be changed.
  • Space Efficiency: Bevel gearboxes are often more compact and suitable for applications where space is limited and a change in direction is required. Helical gearboxes may require more space due to the parallel shaft arrangement.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to straight-cut bevel gearboxes. Bevel gearboxes can be noisier, especially at higher speeds.
  • Application: Helical gearboxes are commonly used in applications requiring smooth and efficient power transmission, such as conveyors, pumps, and mixers. Bevel gearboxes are preferred for applications where changes in direction are necessary, such as in automotive differentials and printing presses.

Ultimately, the choice between helical and bevel gearboxes depends on the specific requirements of the application, including load capacity, space constraints, efficiency goals, and the need for directional changes in power transmission.

helical gearbox

Can Helical Gearboxes Be Retrofitted into Existing Machinery Designs?

Yes, helical gearboxes can often be retrofitted into existing machinery designs, providing an opportunity to upgrade the performance, efficiency, and reliability of older equipment. Here are the key points to consider when retrofitting helical gearboxes:

1. Compatibility: Before proceeding with a retrofit, it’s essential to ensure that the new helical gearbox is compatible with the existing machinery in terms of size, mounting, and shaft connections. Proper measurements and analysis are necessary to avoid any misalignment or fitment issues.

2. Space Considerations: Helical gearboxes may have a different physical profile compared to the original gearboxes. Engineers need to assess the available space in the machinery and confirm that the new gearbox will fit without major modifications.

3. Shaft Alignment: Proper shaft alignment is crucial to ensure smooth and efficient operation. During the retrofit, it’s important to align the new helical gearbox with other components in the system to prevent premature wear, noise, and vibration.

4. Power and Torque Ratings: The power and torque ratings of the helical gearbox should match or exceed the requirements of the machinery. This ensures that the new gearbox can handle the loads and stresses that the machinery may encounter.

5. Performance Improvements: Retrofitting with helical gearboxes can lead to improved efficiency, reduced noise, and smoother operation. These benefits can positively impact the overall performance and lifespan of the machinery.

6. Engineering Expertise: Retrofitting involves careful planning, engineering analysis, and implementation. Working with experienced engineers or gearbox specialists is advisable to ensure a successful retrofit without compromising the integrity of the machinery.

7. Cost-Benefit Analysis: Assessing the costs of the retrofit, including the cost of the new gearbox, installation, downtime, and potential modifications, is essential. Comparing these costs to the anticipated benefits of improved performance and efficiency will help make an informed decision.

8. Maintenance Considerations: Retrofitting may also impact maintenance practices. It’s important to understand any changes in lubrication requirements, inspection intervals, and servicing needs that come with the new gearbox.

Conclusion: Retrofitting helical gearboxes into existing machinery designs can be a cost-effective way to enhance the performance and extend the lifespan of equipment. However, careful planning, engineering analysis, and professional expertise are crucial to ensure a successful retrofit that delivers the desired improvements without causing unforeseen issues.

helical gearbox

Differences Between Helical Gearboxes and Spur Gearboxes

Helical gearboxes and spur gearboxes are two common types of gearboxes used in various applications. Here are the key differences between them:

  • Tooth Design: The main difference between helical and spur gearboxes lies in their tooth design. Helical gearboxes feature helical teeth that are cut at an angle to the gear axis, while spur gearboxes have straight-cut teeth that run parallel to the gear axis.
  • Engagement: Helical gearboxes offer a gradual and smooth engagement of teeth due to their helical tooth design. This results in reduced noise and vibration compared to spur gearboxes, which can have more abrupt and noisy tooth engagement.
  • Load Distribution: Helical gearboxes have a higher contact ratio between teeth at any given time, which leads to better load distribution across the gear teeth. Spur gearboxes, on the other hand, have fewer teeth in contact at a time, potentially leading to higher stress on individual teeth.
  • Efficiency: Helical gearboxes tend to be more efficient than spur gearboxes due to the helical tooth design, which reduces friction and energy losses during gear meshing. The gradual engagement of helical teeth contributes to this higher efficiency.
  • Noise and Vibration: Helical gearboxes generate less noise and vibration compared to spur gearboxes. The helical tooth design and smooth engagement help in reducing the impact of gear meshing on overall noise levels.
  • Applications: Helical gearboxes are commonly used in applications that require higher torque and smoother operation, such as heavy machinery, automotive transmissions, and industrial equipment. Spur gearboxes are suitable for applications with moderate loads and where noise considerations are not critical.

Overall, helical gearboxes offer advantages in terms of efficiency, load distribution, and noise reduction compared to spur gearboxes. However, the choice between the two depends on specific application requirements and factors such as torque, speed, space constraints, and noise considerations.

China Hot selling Zlyj173 Extrusion Machine Speed Reducer Gearbox   cvt gearbox	China Hot selling Zlyj173 Extrusion Machine Speed Reducer Gearbox   cvt gearbox
editor by CX 2023-12-08